
The Security of Static Typing with Dynamic Linking

Drew Dean�

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

Abstract

Dynamic linking is a requirement for portable executable content.
Executable content cannot know, ahead of time, where it is going to
be executed, nor know the proper operating system interface. This
imposes a requirement for dynamic linking. At the same time, we
would like languages supporting executable content to be statically
typable, for increased efficiency and security. Static typing and dy-
namic linking interact in a security-relevant way. This interaction
is the subject of this paper. One solution is modeled in PVS, and
formally proven to be safe.

1 Introduction

When the World Wide Web was composed of static HTML docu-
ments, with GIF and JPEG graphics, there was fairly little concern
for the security of the browsers. The main objective was to avoid
buffer overflow problems which could lead to the execution of ar-
bitrary machine code. When the Web left the research domain and
entered the mass market, security became a problem: users wanted
electronic commerce. The SSL and S-HTTP protocols were de-
signed to provide cryptographically strong identification of Web
servers, and privacy protection for information such as credit card
numbers. While an early implementation of SSL had a problem
seeding its random number generator [9], and cryptographic proto-
cols are always tricky to design, the situation appeared to be well
in hand. Then Java1[10] arrived. Java has become tremendously
popular in 1995-96, primarily due to its support of embedding ex-
ecutable content in World Wide Web pages. Of course, executable
content dramatically changes the security of the Web. Java was pro-
moted as addressing the security issue; however, several problems
have been found [3].

Java offers a new challenge to computer security: its protec-
tion mechanisms are all language-based. Of course, this is really

�This work was partially supported by DARPA through Rome Laboratory con-
tract F30602-96-C-0204. Author’s present address: Department of Computer Science,
Princeton University, 35 Olden St., Princeton, NJ 08544, ddean@cs.princeton.edu

1Java and Java-based marks are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the United States and other countries.
Copyright c 1996 ACM. All rights reserved. Permission to
copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission. To appear in the Fourth ACM Conference on Com-
puter and Communications Security, April 2–4, 1997, Zurich.

an old idea, but one that has not seen much use since the 1970s.
Java is meant to be a “safe” language, where the typing rules of the
language provide sufficient protection to serve as the foundation
of a secure system. The most important safety property istype-
safety, by which we mean that a program will never “go wrong”
in certain ways: every variable’s value will be consistent with the
variable’s declaration, function calls (i.e., method invocation in the
case of Java) will all have the right number and type of arguments,
and data-abstraction mechanisms work as documented. All secu-
rity in Java depends upon these properties being enforced. While
the work described here has been inspired by Java, and uses Java
concepts and terminology, other systems that base their protection
on language mechanisms face similar issues.

One critical issue is the design of dynamic linking[3]. Since
Java is a (mostly) statically typed language [10], there exists the
potential for a Java applet to run in a different environment than the
one in which it was verified, thus leading to a security problem. It
was shown that the ability to break Java’s type system leads to an
attacker being able to run arbitrary machine code, at which point
Java can make no security claims[4]. While type theory is a well
developed field, there has been relatively little work on the seman-
tics of linking, and less work where linking is a security-critical
operation.

This paper addresses the design of a type-safe dynamic linking
system. While safe dynamic linking is not sufficient for building a
secure system, it is necessary that linking does not break any lan-
guage properties. The rest of the paper is structured as follows.
Section 2 discusses related work, Section 3 gives an informal state-
ment of the problem, Section 4 informally discusses the problem,
its ramifications, and solution, Section 5 discusses the formal treat-
ment of the problem in PVS [16], Section 6 briefly discusses im-
plementation and assurance issues, and Section 7 concludes. The
PVS specification is provided in an appendix.

2 Related Work

There has been very little recent work in linking. The traditional
view is that linkage editing (informally,linking, performed by a
linker) is a static process that replaces symbolic references in ob-
ject modules with actual machine addresses. The linker takes takes
object modules (e.g., Unix2 .o files) produced by a compiler or
assembler, along with necessary runtime libraries (e.g., Unix.a
files) as input, and produces an executable program by laying out
the separate pieces in memory, and replacing symbolic references
with the machine addresses. Static linking copies code (e.g., the

2Unix is a registered trademark of X/Open, Inc.

1

standard C library’sprintf() function) and data from the run-
time libraries into the executable output. The alternative strategy is
dynamic linking.

Although dynamiclinking is an old idea (appearing in Mul-
tics [15], among other systems), it did not become popular in the
Unix and PC worlds until the late 1980s to early 1990s, with the
advent of systems such as SunOS 4.0 [8] and Microsoft Windows.
Dynamic linking delays the replacement of symbolic references
with machine addresses until the program is loaded into memory
from disk. (In practice, most dynamic linking islazy, that is, a
symbolic reference is not replaced until it is used the first time.)
Dynamic linking saves both disk space and memory, as there needs
to be only one copy of each library on disk, and multiple processes
can share the code (assuming it is not self-modifying), but not data
areas, in memory. Dynamically-linked programs start up a little
slower than statically-linked programs, but this is generally not a
problem on modern CPUs.

Besides the memory and disk savings, dynamically linked code
offers increased flexibility. Bug fixes in library routines require
only the installation of the new libraries, and all dynamically linked
programs on the system acquire the fix. Routines with the same in-
terfaces, but different behavior, can be substituted for one another,
and the behavior of all dynamically linked programs installed on
the system changes.3 This feature is essential for executable con-
tent to be portable. A runtime system abstracts the operating sys-
tem’s system call interface into a portable set of libraries. While
the libraries’ implementation is platform dependent, all the imple-
mentations have the same interface, so the (e.g.) Java applet does
not need to know what kind of computer it is running on.

Unix, Macintosh, and PC operating systems, along with C,
COBOL, FORTRAN, and Pascal, have treated linking as the pro-
cess of replacing symbolic references with machine addresses.
Since C compilers compile a single file at a time, they cannot de-
tect the same variable being declared differently in different source
files. Declaring a variable to be an integer in one file and a pointer
in another leads to a unsafe program: trying to interpret an integer
as a pointer usually leads to a core dump. Since protection in Java
depends on preventing users from forging object references, such a
type mismatch would completely undermine the system.

Well-designed languages have module systems that provide
support for separate compilation without these problems [21, 13].
C++ introducedname manglingas a way to encode type informa-
tion into linking, to prevent inter-module type errors while still us-
ing standard linkers [20].4

Drossopoulou and Eisenbach’s recent work[5] considers the
type safety of a subset of Java. While it accounts for forward refer-
ences, it assumes that it is looking at an entire program in a closed
world. It does not model the interleaving of type checking, linking,
and program execution.

Cardelli’s recent work [2] addresses type-safety issues with
separate compilation and linking. He introduces a simple language,
the simply-typed�-calculus, with a primitive module system that
supports separate compilation. He then informally, but rigorously,
proves that his linking algorithm terminates, and if the algorithm
is successful, that the resulting program will not have a type error.

3Hostname lookup in SunOS 4.x is a prime example: the default standard C library
provided by Sun uses Sun’s NIS to look up hostnames. A system administrator can
rebuild the library to use the Internet Domain Name System.

4C++ compilers replace function names with symbols that encode the argument
and return types of the function. There is no standard algorithm for doing this, which
interferes with the interoperability of various C++ compilers on the same machine.
This hack was introduced because standard Unix linkers had no way to associate type
information with symbols.

(Here a type error means calling a function with the wrong number
or type(s) of arguments, or using a number as a function.) How-
ever, it assumes that all types are known at link time, and does not
address (mutually) recursive modules.

Janson’s work [11] removes dynamic linking from the Mul-
tics kernel. Janson argues that the Multics dynamic linker isnot
security-relevant, so it should not be part of the security kernel. His
redesign of dynamic linking moves it into each process, where it
happens in user mode rather than kernel mode. (The SunOS 4 dy-
namic linker design [8] is very similar.) However, dynamic linking
in Javais security-relevant, unlike Multics, where hardware-based
rings were used for protection.

The situation in Java is different from either of the above situ-
ations. Java does not have type information available at link time;
type checking (that is, byte code verification) is interleaved with
dynamic linking. Since the safety of the system relies on type-
safety, which in turn relies on proper dynamic linking, the linker is
critical to security, unlike the Multics case. This paper considers
the security-critical interaction of linking and type checking.

3 Informal Problem Statement

The Java runtime system may interleave type checking, linking,
and program execution [10]. The implementation from JavaSoft
(and used by Netscape in their Web browser) takes advantage of
this freedom. Since most implementations of Java are statically
typed, we need to be sure that a linking action cannot invalidate
the results of previously performed type checking. If linking could
invalidate type checking, then a Java system would be vulnerable
to a time-of-check-to-time-of-use (TOCTTOU) attack.

The potential vulnerability is as follows: an applet is down-
loaded and verified. Part of the verification procedure involves type
checking. An applet is (in general) composed of multiple classes,
which can reference each other and runtime library components in
arbitrary ways (e.g., mutually recursively). The type correctness
of the applet depends on the types of these external references to
other classes. These classes, if not already present, are loaded dur-
ing type checking. However, an applet can ask for any arbitrary
class to be loaded via aClass.forName() call. If a class could
load a new class to be used in place of the one it was type checked
against, the system would not be type safe. (The actual rules for ex-
actly when Java classes are loaded are very complicated; to make
the proofs tractable, we use the simplified system described above.)

The exact correspondence between classes and types is subtle.
We use Fisher and Mitchell’s model[7], where classes are in 1–
1 correspondence withimplementation types, and implementation
types are subtypes ofinterface types, which define the externally
visible structure of the class. (Interface types roughly correspond
to Javainterface s.) We say thatA is a subtype ofB, written
A � B, if an expression of type A can be used in any context where
an expression of type B is required. Two implementation types are
the same iff they have the same name. (In Java, two classes are the
same iff they have the same name and the same classloader[10].)
Two interface types are the same if they are structurally equiva-
lent. Interface types fit nicely in theobjects as recordsmodel[1],
so we can define structurally equivalent as having the same fields,
where corresponding fields have the same type. For an implemen-
tation typeImpl, we writeImplInter for the corresponding inter-
face type. The interested reader is referred to Fisher’s thesis[6] for
more details.

We need to define some standard terms from type-theory be-
fore we proceed. Let� be atype contextof the form� = fx1 :

2

�1; : : : ; xk : �kg, where eachxi is a distinct identifier (in this case,
they represent classes), and each� is an implementation type. The
notationx : � assignsx the type�. �(x) = � iff x : � 2 �.
Definexi v xj iff xiInter = xjInter .5 Define� � �

0 when
8x 2 � : �(x) v �

0
(x); we call�0 aconsistent extensionof �.

Let M range over Java classes, which are the objects of type
checking. We write� ` M : � to mean thatM has type� in con-
text �; this is called atyping judgment. We assume the following
proposition holds:

Proposition 1 If � `M : � and � � �
0; then �

0 `M : � .

The justification for this proposition can be found in [14]; it
is a combination of Mitchell’s(add hyp)axiom and his Lemmas
2.2.1 and 2.2.2. The intuitive reading of this proposition is that we
can consistently extend the environment without changing typing
judgments in a type system that satisfies the proposition. A rigorous
proof of this would require a formalization of the Java type system
(see [5] for work in this direction), and is beyond the scope of this
paper.

The above definitions are all well and good, but how do they
relate to security? Consider a user preparing to run a Java applet
embedded in a Web page. Their system provides runtime libraries
for the applet, which are under the user’s control. The applet’s
code is completely under its author’s control, and was compiled
and (hopefully!) tested on his system, against his copy of the run-
time libraries. The user’s Java runtime implementation may supply
additional classes that the author doesn’t have. The author would
like to know that these will not affect the execution of the applet.
The user wants to know that once the applet has been verified (i.e.,
type checked), that the applet cannot do anything (by adding to
or changing its type context) that the verifier would have rejected.
Thus, we have a mutual suspicion problem. Under the restrictions
given above, the programmer and end-user can safely cooperate.

Restriction 1 (Linking) A program can only change its type con-
text,�, to a new type context,�0, in a way such that� � �

0.

In summary, by limiting type context modifications to consistent
extensions, we can safely perform dynamic linking in the presence
of static type checking. The rest of the paper considers the formal-
ization and proof of this statement, along with the consequences of
ignoring this limitation.

4 Informal Discussion

The linking restriction given above is a necessary condition so that
linking operations do not break the type safety of a language. The
designers of Java provided a very flexible dynamic linking facil-
ity when they designed theClassLoader mechanism. The basic
system only knows how to load and link code from the local file
system, and it exports an interface, in the classClassLoader ,
that allows a Java program to ask the runtime system to turn an ar-
ray of bytes into a class. The runtime system does not know where
the bytes came from; it merely attempts to verify that they represent
valid Java byte code. (The byte code is the instruction set of an ab-
stract machine, and is the standard way of transmitting Java classes
across the network.) Each class is tagged with theClassLoader

5The reader familiar with object-oriented type theory might expect the definition
of v to bexiInter � xjInter

. However, since Java objects are really object
references, and the Java class hierarchy is acyclic (i.e.,� is a partial order, not just a
pre-order) there is no statically sound subtype relation other than equality.

that loaded it. Whenever a class needs to resolve a symbolic refer-
ence, it asks its ownClassLoader to map the name it gives to
a class object. Our model always passes theClassLoader as an
explicit argument; we prove safety for allClassLoader s.

The original Java Development Kit (JDK) implementation
(JDK 1.0.2) did not place any restrictions on the behavior of
ClassLoader s. This led to the complete breakage of type
safety, where integers could be used as object references, and vice
versa [3]. The type safety failure led to an untrusted applet be-
ing able to run arbitrary machine code, thus completely compro-
mising the security of Java applets [4]. After discussion with
Sun, language was added to the definition of Java [10] restrict-
ing ClassLoader s to safe behavior. Code to implement this re-
striction (essentially the same as the linking restriction) has not yet
shipped, but is expected shortly in JDK 1.1.

The absence of the linking restriction directly led to two prob-
lems in the JDK 1.0.2 implementation:

1. A rogueClassLoader can break the semantics of Java by
supplying inconsistent mappings from names to classes. In
earlier JDK releases, and Netscape Navigator 2.0x, this led to
complete compromise of the system.

2. Another bug was found in JDK 1.0.2’s handling of array
classes. (In Java, all arrays are objects, and suitable class def-
initions are automatically generated.) It was possible to trick
the system into loading a user-defined array class while the
program was running, aliasing a memory location as both an
object reference and an integer. The static type checking was
performed against the real array class, and then the program
loaded the bogus array class by its request, which was an not
a consistent extension of the type context. This bug was in the
AppletClassLoader supplied by Sun, and exploitable by
web applets. This also led to running arbitrary machine code,
completely compromising the security of the system.

The PVS specification presented below specifies a simple im-
plementation of dynamic linking. It restricts linking to consistent
extensions of the current type context. It shows that all relevant
operations invariantly preserve consistency of the type context. It
proves that the initial context (here, a cut down version of the Java
runtime library) is consistent. The combination of these properties
is an inductive proof of the safety of the system.

5 Formal Treatment in PVS

PVS[16]6 is the PROTOTYPE VERIFICATION SYSTEM, the cur-
rent SRI research project in formal methods and theorem prov-
ing. PVS has been used to verify many different projects, includ-
ing a microprocessor[19], floating point division[18], fault-tolerant
algorithms[12], and multimedia frameworks[17], by users at SRI
and other sites. PVS combines a specification language with a va-
riety of theorem proving tools.

Proposition 1 states that security is preserved if a program is
linked and run in a consistent extension of the type context it was
compiled in. Any actual implementation of dynamic linking will
be quite complex, and it is not obvious that a particular implemen-
tation satisfies Proposition 1. This paper builds a model of dy-
namic linking that is quite similar to the Java implementation, and
proves that this model ensures type-safety. By writing a concrete
specification in PVS, and proving the desired properties, we get a

6For more information about PVS, seehttp://www.csl.sri.com/pvs.html

3

specification that looks very much like a functional program, along
with a correctness proof. While some specification writers would
prefer a more abstract specification (with key properties defined as
axioms, and many functions unspecified), we chose to give a very
concrete specification, to make it easier to relate to an actual imple-
mentation. PVS’s proof facilities are strong enough to make this
specification verifiable without undue difficulty.

5.1 The PVS Model

It should be noted that the model is fairly closely related to how
Sun’s Java implementation performs dynamic linking, but it isnot
a model of Java. Certain simplifications were made to Java, and
the model fixed design problems observed in the JDK 1.0.2 imple-
mentation. Sun has been working on their system as well, and co-
incidentally certain features are similar, but these are independent
designs, and one should be careful not to confuse the results of this
paper with any products. This model merely shows that dynamic
linking can peacefully co-exist with static typing.

5.1.1 PVS Types

The core structure in the model is theClassTable , which con-
tains two mappings: the first, anenvironmentmapping(Name,
ClassLoader) pairs toClassID s, and the second, astoremap-
ping ClassID s toClass objects. The terms “environment” and
“store” are meant to reflect similar structures in programming lan-
guage semantics. The environment associates names with locations
(on a physical machine, memory addresses), and the store sim-
ulates RAM. The indirection between(Name,ClassLoader)
pairs andClass es exists so that linking does not have to change
the environment; it only changes the store. This allows us to show
that the environment does not change over time, even if the actual
objects that the names are bound to do. Note that we keep a map-
ping from a(Name,ClassLoader) pair to a list ofClassID s;
the correctness proof is that there is at most oneClassID asso-
ciated with each name, i.e., that this mapping is a partial function.
We keep a list ofClassID s instead of a set, so we can tell what
order things happened in if anything should ever break. We define
a state as safe iff each(Name, ClassLoader) pair maps to at
most oneClassID .7

We declareClassLoader to be an uninterpreted type with at
least one element. The natural model of the JavaClassLoader
would be a mutually recursive datatype withClass , but PVS does
not handle the mutual recursion found in the Java implementation
conveniently. Since our model only uses theClassLoader as
part of the key in theClassTable , it suffices forClassLoader
to be uninterpreted.

TheClass datatype represents classes in our model. A class
has either been resolved (i.e., linked), or unresolved, in which case
the class has no pointers to other classes, but only unresolved sym-
bols. One might be tempted to use only the resolved constructor,
but PVS requires that each datatype have a non-recursive construc-
tor.

The ClassID is imported from theidentifiers theory.
These are merely unique identifiers; currently they are imple-
mented in the obvious fashion using integers. It is better to define
a theory for identifiers, so that other representations can be used

7The model is defined in a way such that the set of(Name, ClassLoader)
to ClassID mappings is monotonically increasing. This property makes the safety
definition sufficient. However, a formal proof that the mapping is time-invariant would
be nice. This is future work.

later, without changing the proofs. TheClassIDMap plays the
role of a store in semantics, giving a mapping betweenClassID s
andClass es. ClassDB is a pair consisting of the next unused
identifier, and aClassIDMap .

We represent objects by the typeObject , which merely
records which class this object is an instance of. While this rep-
resentation is fairly abstract, it suffices for our proofs.

5.1.2 PVS Implementation

The structure of our model roughly follows Sun’s Java Virtual Ma-
chine implementation. The major exception is that PVS does not
have global variables or mutation, so we explicitly pass the state of
the system to each function. We have also rearranged some data
structures for ease in modeling.

Primitive Operations The FindClassIDs function takes
a ClassTable , the name of a class, and the requested
ClassLoader , and returns a list ofClassID s. FindClass
applies the current store, mappingClassID s toClass es, to the
result ofFindClassIDs .

TheInsertClass function takes aClassTable , the name
and ClassLoader of a new class, and the new class, and inserts it
into theClassTable . It returns the newClassTable . Note
that the insertion generates a newClassTable — it does not
destroy the old one. This is a low-level utility function that does
not enforce any invariants; those are supplied at a higher level.

TheReplaceClass function takes aClassTable , the old
and new classes, and the appropriateClassLoader , and updates
the store iff the appropriate class is found. It then returns the new
ClassTable . If no appropriate class is found, it returns the un-
changedClassTable .

Class Loading Thedefine function is modeled after the Java
defineClass() function. It takes aClassTable , the name
of the new class, the unresolved references of the new class, and a
ClassLoader . It returns a pair: the new class and the updated
class table. No invariants are checked at this level. This corre-
sponds to the Java design, wheredefineClass() is a protected
method inClassLoader , and is only called after the appropriate
safety checks have been made.

The loadClass function plays a role similar to
loadClass() in a properly operating JavaClassLoader .
In the Java system,loadClass() is the method the runtime
system uses to request that aClassLoader provide a mapping
from a name to aClass object. Our model checks whether the
class is provided by the “runtime system,” by checking the result
of findSysClass . We then check whether thisClassLoader
has defined the class, and return it if so. Otherwise, we define a
new class. Since this class could come from anywhere, and contain
anything (we assume only valid classes), we tell PVS that some
external references exist in theInput: (cons?[string])
construction, without specifying any particular external references.

ThelinkClass function, although it plays a supporting role,
is defined here because PVS does not allow forward references.
The linkClass function takes aClassTable , the class to
be linked, and the class’sClassLoader , and returns the linked
class, and the updatedClassTable . The linking algorithm is
very simple: while there is an unresolved reference, find the class
it refers to, (loading it if necessary, which could create a new

4

ClassTable), and resolve the reference. ThelinkClass func-
tion only returns “resolved” classes; these may be partially resolved
in the recursive calls tolinkClass during the linking process.

The resolve function is modeled after the Java
resolveClass() method. It takes aClassTable ,
class, and class loader, links the class with respect to the given
ClassLoader , and updates theClassTable . It returns the
newClassTable .

Classes Class es have several operations: the ability to create
a new instance of the class, ask the name of a class, get a class’s
ClassLoader , and to load a new class. Loading a new class is
the only non-trivial operation; it simply invokesloadClass .

The Java runtime system provides several classes that are “spe-
cial” in some sense:java.lang.Object is the root of the class
hierarchy, java.lang.Class is the class ofClass objects,
and java.lang.ClassLoader defines the dynamic linking
primitives. These classes play important roles in the system; we
model this behavior by assuming they are pre-loaded at startup.

5.2 The Proofs

This paper offers two contributions: While Proposition 1 is a simple
statement, it is a necessary restriction whose importance has been
overlooked, especially in the initial design and implementation of
Java. The concept, though, is generic: any language whose type
system satisfies Proposition 1 (and most do) can use the results of
this paper. Given an operational semantics for the language under
inspection, a completely formal safety proof can be constructed.
Drossopoulou and Eisenbach’s work[5] is a good beginning, but
was not available when this work began. The second contribution
is a proof that the requirements of Proposition 1 are satisfied by our
model. Here the proofs are discussed at a high level; PVS takes
care of the details.

There are three lemmas, twoputative theorems, labeled as con-
jectures, and five theorems which establish the result. The putative
theorems are checks that the specification conveys the intent of the
author. Formal proof of these theorems increases our confidence in
the correctness of the specification. The five theorems show that
the system starts operation in a safe state, and each operation takes
the system from a safe state to a safe state. Since the theorems
are universally quantified over class names, classloaders, classes,
and class tables, any interleaving of the functions (assuming each
function is an atomic unit) is safe. All of the theorems have been
formally proven in PVS; here we only present brief outlines of the
proofs. The details are all routine, and taken care of by PVS.

5.2.1 Lemmas

MapPreservesLength Map is a function that takes a function
and a list, and returns the list that results from applying the func-
tion to each element of the list.8 MapPreservesLength simply
asserts that the length of the resulting list equals the length of the
argument list. The proof is by induction on the length of the list
and the definition ofmap.

8Map is a standard function in most functional programming languages.
While the standard PVS definition is slightly complicated, it is equivalent to:
map(l: list[T], f: function[T -> S]) : RECURSIVE
list[S] = IF null?[l] THEN null ELSE cons(f(car(l)),
map(cdr(l), f)) ENDIF

proj1 FindClassIDs This lemma asserts the independence of
the environment, mapping(Name, ClassLoader) pairs to
ClassID lists, and the store, mappingClassID s to Class es.
The lemma states that for allClassTable s, looking up a name
in the environment gives the same result no matter what store is
supplied. The proof is by induction on the size of the environment.
It’s clearly true for the empty environment, and the store is not ref-
erenced during the examination of each binding.

safe proj This technical lemma is needed in the proof of
resolve inv . It states that a safeClassTable is still safe
when its store is replaced by an arbitrary store. Since safety is a
function of the environment, not the store, this is intuitively obvi-
ous. The proof uses theMapPreservesLength lemma.

5.2.2 Conjectures

Add This putative theorem was the first one proven, to check
our understanding of the specification. It states that looking up a
class, after inserting it, returns at least one class. PVS automati-
cally proves this theorem.

Resolve This putative theorem states that linking terminates by
producing a class with no unresolved references. (We do not model
the failure to find an unresolved reference.) The proof is by induc-
tion on the number of unresolved references. Clearly it holds for a
completely resolved class, and each recursive call tolinkClass
resolves one class reference.

5.2.3 Theorems

forName inv This is the first case of the invariant. It
states that theforName function preserves safety. The
proof follows from the lemmasMapPreservesLength and
proj1 FindClassIDs .

Initial Safe This theorem states that the system initially starts out
in a safe state. With the aid of thestring lemmas theory, writ-
ten by Sam Owre, PVS proves this theorem automatically. Since
the initial state has finite size, the safety property is very simple to
check.

loadClass inv This is the next case to consider in proving the
invariant. It states that theloadClass function is safe, in the
sense that it will never bind a(Name, ClassLoader) pair to a
Class if such a binding already exists. The proof is very similar
to forName inv .

linkClass inv This case of the invariant states thatlinkClass
preserves safety. The intuitive idea is thatlinkClass only modi-
fies the store, not the environment. The proof is fairly complicated,
usingloadClass inv as a lemma, proceeds by induction on the
number of unresolved references in the class.

resolve inv This is the last case of the invariant. It states
that the resolve operation is safe. This is intuitively obvi-
ous, sinceresolve is the composition oflinkClass and
ReplaceClass , neither of which modifies the environment. The
proof useslinkClass inv as a lemma, and then does a case
split on the result ofFindClassIDs . If FindClassIDs re-
turns a list, thesafe proj lemma leads to the desired result. If
FindClassIDs returnsnull , the result is immediate.

5

6 Implementation and Assurance

This paper has discussed amodelof dynamic linking, and proven
a safety property under one assumption. While this is a nice result,
systems in the real world get implemented by humans. A couple of
simplifications were made with respect to Java:

1. Class names were assumed to be in canonical form; Java re-
quires mapping “.” to “/” at some point. Since this is not a
1–1 correspondence, it needs to be handled consistently.

2. The fact that array classes (classes with names beginning with
a [) have a special form has not been modeled.

3. The failure to locate a class is not modeled. We assume that
such a failure will halt program execution, via an unspecified
mechanism.

The basic conclusion for implementors is that each class definition
must be loadedexactlyonce for each classloader. The simplest way
to do this is for the runtime system to track which classes have been
loaded by which classloaders and only ask a classloader to provide
the definition of a class once. We assume that a classloader will
either provide a class or fail consistently.

The assurance level of the final system will depend on many
factors. We note that our mechanism is conceptually simple, and
can be specified in three pages. Our proofs were performed with
lists, because they are simple to do inductive proofs on. A real im-
plementation would probably use a more efficient data structure.
However, it should be simple to show that other data structures,
e.g., a hash table, satisfy the required properties. The specifica-
tion contains no axioms, and is essentially a functional program,
in the sense that it shows exactly what is to be computed, and so
could serve as a prototype implementation. Clearly, though, dy-
namic linking is part of the trusted computing base for Java and
similar systems, and a given system will have an assurance level no
higher than the assurance of its dynamic linking.

7 Conclusion

This paper presents one of many models for dynamic linking. A
formal proof is presented to show that dynamic linking need not
interfere with static type checking. While the system presented is
not Java, it is closely related, and can serve as a proof-of-concept
for Java implementors. Studying the JDK implementation for the
purpose of modeling it for this work led to the discovery of a type-
system failure in JDK 1.0.2 and Netscape Navigator 2.02. The
proofs presented here were not unduly hard to generate, and greatly
improve confidence in the safety of dynamic linking.

8 Acknowledgments

The work reported on in this paper was done while the author was
visiting the Computer Science Laboratory at SRI International. The
visit was arranged by Peter Neumann and John Rushby. Technical
assistance, without which this work would not have been possi-
ble, was provided by David Stringer-Calvert, Natarajan Shankar,
and Sam Owre. The content and presentation of this work were
greatly enhanced by comments from Andrew Appel (Princeton
University), Ed Felten (Princeton University), Peter Neumann,
John Rushby, and Natarajan Shankar. I would also like thank all the
other members of the laboratory who made my stay a very pleasant
and productive experience.

References

[1] CARDELLI , L. A semantics of multiple inheritance.Infor-
mation and Computation 76(1988), 138–164.

[2] CARDELLI , L. Program fragments, linking, and modular-
ization. InProceedings 24th ACM SIGPLAN-SIGACT Sym-
posium on the Principles of Programming Languages(Jan.
1997). To appear.

[3] DEAN, D., FELTEN, E. W., AND WALLACH , D. S. Java
security: From HotJava to Netscape and beyond. InProceed-
ings of the 1996 IEEE Symposium on Security and Privacy
(May 1996), pp. 190–200.

[4] DEAN, D., FELTEN, E. W., AND WALLACH , D. S. Java se-
curity: From HotJava to Netscape and beyond. InComputers
Under Attack, P. Denning, Ed., 2nd ed. ACM Press, 1997. To
appear.

[5] DROSSOPOULOU, S., AND EISENBACH, S. Is the Java
type system sound? InProceedings of the Fourth Inter-
national Workshop on Foundations of Object-Oriented Lan-
guages(Paris, Jan. 1997). To appear.

[6] FISHER, K. Type Systems for Object-Oriented Programming
Languages. PhD thesis, Stanford University, 1996.

[7] FISHER, K., AND MITCHELL, J. C. On the relationship
between classes, objects, and data abstraction. InProceed-
ings of the 17th International Summer School on Mathematics
of Program Construction(Marktoberdorf, Germany, 1996),
LNCS, Springer-Verlag. To appear.

[8] GINGELL, R. A., LEE, M., DANG, X. T., AND WEEKS,
M. S. Shared libraries in SunOS. InUSENIX Conference
Proceedings(Phoenix, AZ, 1987), pp. 131–145.

[9] GOLDBERG, I., AND WAGNER, D. Randomness and the
netscape browser.Dr. Dobb’s Journal(Jan. 1996).

[10] GOSLING, J., JOY, B., AND STEELE, G. The Java Language
Specification. Addison-Wesley, 1996.

[11] JANSON, P. A. Removing the dynamic linker from the se-
curity kernel of a computing utility. Master’s thesis, Mas-
sachusetts Institute of Technology, June 1974. Project MAC
TR-132.

[12] L INCOLN, P., AND RUSHBY, J. Formal verification of an
algorithm for interactive consistency under a hybrid fault
model. InComputer-Aided Verification, CAV ’93(Elounda,
Greece, June/July 1993), C. Courcoubetis, Ed., vol. 697
of Lecture Notes in Computer Science, Springer-Verlag,
pp. 292–304.

[13] MILNER, R., TOFTE, M., AND HARPER, R. The Definition
of Standard ML. MIT Press, Cambridge, MA, 1990.

[14] MITCHELL, J. C. Type systems for programming lan-
guages. InHandbook of Theoretical Computer Science, J. van
Leeuwen, Ed., vol. B: Formal Models and Semantics. Else-
vier Science Publishers B.V., 1990, ch. 8.

[15] ORGANICK, E. The Multics System: An Examination of its
Structure. MIT Press, Cambridge, Massachusetts, 1972.

6

[16] OWRE, S., SHANKAR , N., AND RUSHBY, J. M. User Guide
for the PVS Specification and Verification System. Computer
Science Laboratory, SRI International, Menlo Park, CA, Feb.
1993. Three volumes: Language, System, and Prover Refer-
ence Manuals; A new edition for PVS Version 2 is expected
in late 1996.

[17] RAJAN, S., RANGAN, P. V., AND VIN, H. M. A formal
basis for structured multimedia collaborations. InProceed-
ings of the 2nd IEEE International Conference on Multimedia
Computing and Systems(Washington, DC, May 1995), IEEE
Computer Society, pp. 194–201.

[18] RUESS, H., SHANKAR , N., AND SRIVAS, M. K. Modular
verification of SRT division. InComputer-Aided Verification,
CAV ’96 (New Brunswick, NJ, July/August 1996), R. Alur
and T. A. Henzinger, Eds., vol. 1102 ofLecture Notes in Com-
puter Science, Springer-Verlag, pp. 123–134.

[19] SRIVAS, M. K., AND MILLER, S. P. Formal verification of
the AAMP5 microprocessor. InApplications of Formal Meth-
ods, M. G. Hinchey and J. P. Bowen, Eds., Prentice Hall In-
ternational Series in Computer Science. Prentice Hall, Hemel
Hempstead, UK, 1995, ch. 7, pp. 125–180.

[20] STROUSTRUP, B. The Design and Evolution of C++.
Addison-Wesley, 1994.

[21] WIRTH, N. Programming in Modula-2, 2nd ed. Springer-
Verlag, 1983.

7

A The PVS Specification

The PVS specification language builds on a classical typed higher-order logic. The base types consist of booleans, real numbers, rationals,
integers, natural numbers, lists, and so forth. The primitive type constructors include those for forming function (e.g.,[nat -> nat]),
record (e.g.,[# a : nat, b : list[nat]#]) , and tuple types (e.g.,[int, list[nat]]). PVS terms include constants, vari-
ables, abstractions (e.g.,(LAMBDA (i : nat): i * i)), applications (e.g.,mod(i, 5)), record constructions (e.g.,(# a := 2,
b := cons(1, null) #)), tuple constructions (e.g.,(-5, cons(1, null))), function updates (e.g.,f WITH [(2) := 7]),
and record updates (e.g.,r WITH [a := 5, b := cons(3, b(r))]). Note that the applicationa(r) is used to access thea field
of recordr , and the applicationPROJ2(t) is used to access the second component of a tuplet . PVS specifications are packaged as
theories.

Types: THEORY

BEGIN

IMPORTING string lemmas; identifiers

ClassLoader: TYPE+

Class: DATATYPE
BEGIN
resolved(name: string; references: list[string]; loader: ClassLoader; linked : list[Class]) :

resolved?
unresolved(name: string; references: list[string]; loader: ClassLoader) : unresolved?
END Class

ClassID: TYPE = Ident

ClassList: TYPE = list[Class]

ClassIDMap: TYPE = FUNCTION[ClassID! Class]

ClassDB: TYPE = [ClassID;ClassIDMap]

ClassTable: TYPE = [list[[string;ClassLoader; list[ClassID]]];ClassDB]

Object: TYPE+ = [# cl : Class#]

primordialClassLoader: ClassLoader

mkClass((nm : string); (refs : list[string]); (ldr : ClassLoader)) :
Class = unresolved(nm; refs; ldr)

bogusClass: Class = mkClass("" ; null; primordialClassLoader)

emptyClassTable: ClassTable= (null; (initialID ; � (id : ClassID) : bogusClass))

FindClassIDs((ct : ClassTable); (nm : string); (cldr : ClassLoader)) :
RECURSIVElist[ClassID] = CASESPROJ1(ct) OF

null : null;
cons(hd; tl) :

LET tab = PROJ1(ct);db = PROJ2(ct)
IN IF

PROJ1(hd) = nm̂
PROJ2(hd) =

cldr
THEN PROJ3(hd)

ELSE
FindClassIDs((tl; db); nm; cldr)

ENDIF

ENDCASES
MEASURE length(PROJ1(ct))

FindClass((ct : ClassTable); (nm : string); (cldr : ClassLoader)) :
ClassList = map(PROJ2(PROJ2(ct));FindClassIDs(ct; nm; cldr))

InsertClass((ct : ClassTable); (nm : string); (cldr : ClassLoader); (cl : Class)) : ClassTable=
LET old = FindClassIDs(ct;nm; cldr);

newID = GetNextID(PROJ1(PROJ2(ct)));
newMap = PROJ2(PROJ2(ct)) WITH [newID := cl]

8

IN (cons((nm; cldr; cons(newID;old));PROJ1(ct)); (newID;newMap));

ReplaceClass((ct : ClassTable); (cl; newCl : Class); (cldr : ClassLoader)) : ClassTable=
LET classDB = PROJ2(PROJ2(ct));

id = PROJ1(PROJ2(ct));
tab = PROJ1(ct);
clID = FindClassIDs(ct; name(cl); cldr)

IN CASESclID OF cons(hd; tl) : (tab; (id; classDBWITH [hd := newCl]));null : ctENDCASES

define((ct : ClassTable); (nm : string); (refs : list[string]); (cldr : ClassLoader)) :
[Class;ClassTable] = LET cl = mkClass(nm; refs;cldr) IN (cl; InsertClass(ct; nm; cldr;cl))

findSysClass((ct : ClassTable); (nm : string)) :
ClassList = FindClass(ct; nm; primordialClassLoader)

foo : list[string] = cons("foo " ; null)

Input : (cons?[string])

loadClass((ct : ClassTable); (nm : string); (cldr : ClassLoader)) : [Class;ClassTable] =
LET local = findSysClass(ct;nm); loaded = FindClass(ct; nm; cldr)

IN IF null?(local) THEN IF cons?(loaded) THEN (car(loaded);ct)
ELSE define(ct; nm; Input;cldr)
ENDIF

ELSE (car(local); ct)
ENDIF;

linkClass((ct : ClassTable); (cl : Class); (cldr : ClassLoader)) :
RECURSIVE[Class;ClassTable] = LET getClass= (� (n : string) : loadClass(ct; n; cldr))

IN CASESreferences(cl) OF
null :

IF unresolved?(cl)
THEN (resolved(name(cl); null; loader(cl);null);

ct)
ELSE (cl; ct)
ENDIF;

cons(hd; tl) :
LET (res; newCt) = getClass(hd);

newCl = CASEScl OF

unresolved(name;
references;
loader) :

resolved(name; tl;
loader;
cons(res; null));

resolved(name;
references;
loader; linked) :

resolved(name; tl;
loader;
cons(res; linked))

ENDCASES
IN linkClass(newCt; newCl; cldr)

ENDCASES
MEASURE length(references(cl))

resolve((ct : ClassTable); (cl : Class); (cldr : ClassLoader)) : ClassTable=
LET (newCl;newCt) = linkClass(ct; cl; cldr) IN ReplaceClass(newCt; cl; newCl; cldr);

forName((ct : ClassTable); (nm : string); (cldr : ClassLoader)) : [Class;ClassTable] =
CASESFindClass(ct; nm; cldr) OF cons(hd; tl) : (hd; ct);null : loadClass(ct;nm;cldr) ENDCASES

newInstance((clss: Class)) : Object = (#cl := clss#)

getClassLoader((cl : Class)) : ClassLoader= loader(cl)

getName((cl : Class)) : string = name(cl)

jlObjectClass: Class =
mkClass("java.lang.Object " ; null; primordialClassLoader)

jlClassClass: Class =

9

mkClass("java.lang.Class " ;

cons("java.lang.Object " ;null);primordialClassLoader)

jlClassLoaderClass: Class =
mkClass("java.lang.ClassLoader " ;

cons("java.lang.Object " ;

cons("java.lang.Class " ; null));
primordialClassLoader)

sysClassTable: ClassTable=
InsertClass(InsertClass(InsertClass(emptyClassTable;

"java.lang.Object " ;

primordialClassLoader;
jlObjectClass);

"java.lang.Class " ;

primordialClassLoader; jlClassClass);
"java.lang.ClassLoader " ;

primordialClassLoader; jlClassLoaderClass)

ct : VAR ClassTable

nm : VAR string

cldr : VAR ClassLoader

cl : VAR Class

MapPreservesLength: LEMMA

(8 (f : FUNCTION[ClassID! Class]); (l : list[ClassID]) :
length(map(f; l)) = length(l))

proj1 FindClassIDs: LEMMA
(8 (ct : ClassTable); (nm : string); (cldr : ClassLoader); (classdb: ClassDB) :

FindClassIDs((PROJ1(ct); classdb);nm;cldr) = FindClassIDs(ct; nm;cldr))

Add : CONJECTURE

(9 (cll : ClassList) :
FindClass(InsertClass(ct; nm; cldr; cl);nm; cldr) = cons(cl;cll))

Resolve: CONJECTURE
(8 (cl : Class); (ct : ClassTable); (cldr : ClassLoader) :

references(PROJ1(linkClass(ct; cl;cldr))) = null)

Safe((ct : ClassTable)) : bool =
(8 (nm : string); (cldr : ClassLoader) :

LET cll = length(FindClass(ct; nm; cldr)) IN cll � 1)

safeproj : LEMMA
(8 ct; (mapping: ClassIDMap) :

Safe(ct) � Safe(PROJ1(ct); (PROJ1(PROJ2(ct));mapping)))

forNameinv : THEOREM (8 ct;nm; cldr : Safe(ct) � Safe(PROJ2(forName(ct; nm; cldr))))

Initial Safe: THEOREMSafe(sysClassTable)

loadClassinv : THEOREM

(8 ct; nm; cldr : Safe(ct) � Safe(PROJ2(loadClass(ct;nm;cldr))))

linkClassinv : THEOREM
(8 ct; cl;cldr : Safe(ct) � Safe(PROJ2(linkClass(ct;cl; cldr))))

resolveinv : THEOREM (8 ct; cl; cldr : Safe(ct) � Safe(resolve(ct; cl; cldr)))

END Types

10

