
Since the inception of Java,1,2 there has
been strong and growing interest in
Java’s security as well as in new secu-

rity issues raised by this technology’s deploy-
ment. These concerns have reached the
mainstream—the New York Times, the Wall
Street Journal, and others have run stories
on Java security. However, we must exam-
ine Java’s trustworthiness comprehensively,
from a broad dependability perspective,3-6

not simply from the journalistic view.
A simplistic statement such as “Java is [or is

not] secure” doesn’t come close to capturing
the complexity of the issues involved. To pass
judgment on whether Java is a trustworthy
language or platform, we must precisely
specify requirements of the overall system—
in this case, computer systems and the glob-
al Internet infrastructure. Only then can we
hope to demonstrate vigorously that the plat-
form architecture satisfies or contributes to
the satisfaction of the overall requirements,
and that the platform’s actual implementation
satisfies the architecture’s design requirement.

Unfortunately, neither of these two cru-
cial steps is feasible for security today. The
shape and the characteristics of the nation-
al (or global) system infrastructure are evolv-
ing rapidly. Consequently, such widely used
terms as “Internet security” cannot capture
the essence of the trustworthiness required
of such an infrastructure. (Admittedly, such
terms were not very helpful in the past,
either.) Moreover, though formal methods
have been used successfully to verify some
hardware devices, they are not sufficiently
advanced to address correctness issues of
large-scale software systems.

Given this state of affairs, we must use an
alternative (albeit less scientific and idealis-
tic) set of criteria to examine platform trust-
worthiness. From an industrial point of
view, such criteria must include the follow-
ing considerations:

• Usability—To be ubiquitous and
accepted in the marketplace, the plat-
form must be easy to use for building
small- and large-scale systems and
applications.

• Simplicity—To inspire confidence in its
correctness, the platform cannot be too
complex to analyze (by code inspection
or testing, for example) for critical prop-
erties.

• Adequacy—The platform must contain
all essential features and building
blocks for supporting higher-level trust-
worthiness (security) requirements.

• Adaptability—The platform must
evolve with ease, following demand
and market reality.

Judged by these (perhaps biased) criteria,
Java scores very favorably compared with
other existing languages and programming
systems. In particular, Java’s platform inde-
pendence greatly reduces the complexity—
and thus the probability of design and
implementation errors—of dealing with het-
erogeneous environments. The “write once,
run everywhere” philosophy also helps
improve availability.

Moreover, the encouragement to write
code exclusively in Java (Sun’s “100% pure
Java” initiative) is highly desirable because it
forces all security controls to go through the
Java Virtual Machine. This raises the chances
of putting the necessary protection mecha-
nisms in place and getting them (almost)
right. Other popular platform systems, such
as MS-DOS/Windows, typically require
native methods with direct access to raw
system resources and devices. This makes
retrofitting nonbypassable protection mech-
anisms with backward compatibility an
almost insurmountable task.7,8

This article introduces Java’s existing secu-
rity features and the way they contribute to

14 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

The global system

infrastructure is

evolving rapidly.

Java’s security model

must keep pace.

JAVA SECURITY: PRESENT
AND NEAR FUTURE

Li Gong

JavaSoft

.

its overall usability, simplicity, adequacy, and adaptability in
the global computing arena. It also discusses JavaSoft’s plans
to make new features available as the technology evolves.

The sandbox security model
The original security model that Java provides is known as

the sandbox, a very restricted environment in which to run
untrusted code (applets) obtained from the open network.
The essence of the sandbox model is that a computer entrusts
local code with full access to vital system resources (such as
the file system). It does not, however, trust downloaded
remote code, which can access only the limited resources
provided inside the sandbox.

We have deployed the sandbox model through the Java
Development Toolkit (JDK, the current version as of May 1997
is 1.1.2), and applications built with JDK generally adopt it.

JDK enforces overall security through a number of mech-
anisms. First, the language is designed to be type safe1 and
easy to use. The hope is that the burden on programmers
is such that they are less likely to make subtle mistakes than
they would using other programming languages such as C
or C++.

Second, compilers and a bytecode verifier ensure that
applications built with JDK execute only legitimate Java code.

Moreover, a class loader defines a local name space and
ensures that an untrusted applet cannot interfere with the
operation of other Java programs.

Finally, the Java Virtual Machine mediates access to cru-
cial system resources, and a SecurityManager class checks
and restricts untrusted code’s actions to the bare minimum.

The actual implementation of the Java language and the
runtime system is likely to contain bugs, at least for some
time, just as any large-scale software system would. This is
clearly manifested in the discovery of some well-known
bugs, perhaps most prominently those found by the research
team at Princeton University.9

Evolving the sandbox model
As Java gains popularity among users and developers,

requests for various security features have been flowing in.
Among these are support for enabling flexible and config-
urable security policies, support for cryptographic capabili-
ties, security protocols for network-based authentication and
secure communication, and easy-to-use administration tools.

Starting with JDK 1.1, JavaSoft will provide general Java
users and developers with a series of security features meet-
ing customer requirements.

Applet signing. A prominent new security feature in JDK
1.1 is built-in support for applet signing. Using this feature,
applet writers can digitally sign applets using their signature
keys. The person viewing the applet can use a known public
key to verify that the applet is correctly signed and then choose
to accept the applet as trusted. This will enable the trusted
applet to run as if it were local code. JDK 1.1 contains the nec-
essary tools for code signing, including support for digital sig-
natures, message digest, and certificate manipulation.

New architectural directions. The design of an overall
Java security architecture is constrained in a number of ways.
It must be backward compatible, but also flexible enough

to accommodate rapidly emerging technologies based on
Java. It must function across a wide range of platforms. These
include JavaOS, which is a Java-based operating system that
runs directly on naked hardware, as well as native host sys-
tems such as Microsoft Windows and MacOS.

Figure 1 shows the relationships between various Java
components.

It is natural that JDK should serve as the base platform for
delivering security technologies to Java-based solutions.
Future releases of JDK will deliver at least the following secu-
rity features:

• Basic language safety features (type safety, bytecode
verifier, class loader);

• Essential cryptographic primitives (MD5, SHA-1, DSA,
X.509, DES, triple-DES);

• Fundamental system security features (protection
domain, access control, authorization and delegation,
security policy manager); and

• Necessary networking and Web-based security support
(user authentication protocols, code signing, secure
communication protocols such as SSL and SKIP).

Products built on top of JDK may need additional securi-
ty features. For example, the Java Web Server (previously
known as Jeeves) may provide an additional framework for
securely administering servlets, while the HotJava browser
may provide a browser-specific user interface for configur-
ing security policies.

This technical architecture is potentially limited by business
considerations such as licensing and exportability. The stan-
dard JDK will be fully exportable under US laws and thus
cannot include strong encryption technology. The Java
Cryptography Extensions will be the vehicle that makes
unexportable technology available to US domestic users.
JavaSoft will publish the API specification and documenta-
tion and make them available in accordance with the appro-
priate laws and regulations.

Not shown in Figure 1 is a policy and certification facility

May/June 1997 15

SSL/
SKIP

DES/3DES

RSA/D-H
IDEA, etc.

Network
file

system
clients

Access
control

list
GUI

Servlet
admin.

Gate
object

JavaOS HotJava
Java Web

Server JECF JMAPI

JDK

Login
protocol

Protection
domain

Access
control

Class loader/manager

Nonexportable encryption extension

Signature
certification

Authorization/
delegation

SSL/
SKIP

Code
signing

Figure 1. Overall architecture. JECF: Java Electronic
Commerce Framework; JMAPI: Java Management API.

.

that helps reduce the complexity of system administration. We
envision that, as illustrated in Figure 2, a site security policy
may override or be a supplement to the user-specific policy.
A certification authority (CA) will assist in policy decisions.

Cryptographic library. We designed the cryptographic
library architecture to allow different service providers to sup-
ply their own, compatible implementations of the same cryp-

tographic functions. As illustrated in Figure 3, an application
developer programs to a generic security/cryptography API
obtained from JDK or its cryptographic extension package.

Depending on system installation (including the possibil-
ity of dynamic library downloading), the developer may have
a choice among several providers. One of these is Sun’s ref-
erence implementation in Java, which is typically shipped
together with the high-level APIs. Developers can use this

default or choose (by naming) a spe-
cific provider.

Such provider-conscious design is
rare in software systems but is some-
what fashionable in cryptographic
library designs. Allowing different
providers has a few advantages. For
example, the developer can plug in
a native-code implementation to
make use of an already resident
cryptographic package or a hard-
ware-based solution. Also, there are
any number of reasons that a partic-
ular user may prefer one provider
over another.

We emphasize that our design is
open so that any cryptography
provider can choose to implement to
our APIs and make the implementa-
tion available commercially. We do
not follow a controlled-provider
approach and do not seek to certify
or restrict providers on the basis of
export control or other reasons.

Secure communication. Appli-
cations built with JDK can provide
secure network-based communica-
tions at link level, as in Sun Microsys-
tems’ SKIP technology, or at session
level, as in Netscape’s SSL protocol
(see Glossary). JavaSoft supports
open standards that solve our cus-
tomers’ technical needs, but we can
only operate within our business
restrictions.

16 IEEE Micro

Security

Per site policy

Per user configuration and
per installation configuration

Certificate
authority

Figure 2. Policy configuration.

Applications

Java security/cryptography APIs

Sun's
reference

implementation
in Java

Native
code

implementation

Reference
implementation

by
xyz.com

Figure 3. Cryptographic support allowing alternative
providers.

Glossary of cross-platform security

API Application program interface, the calling conventions an
application uses to access the operating system and other
services

AWT Abstract Windowing Toolkit, a package for building GUIs in
Java

bytecode verifier Mechanism to verify that Java language constraints are sat-
isfied by the class bytecode

class loader Mechanism to dynamically locate and resolve Java classes
code signing Mechanism to ensure code authenticity by signing classes

with digital signatures
DES Data Encryption Standard, an encryption algorithm, cur-

rently a US federal information-processing standard
Diffie-Hellman A key-agreement mechanism based on exponentiation mod-

ulo a prime number
DSA Digital Signature Algorithm, produces digital signatures

based on arithmetic operations; a federal and NIST standard
JDK Java Development Kit
JVM Java Virtual Machine
MD5 A message digest algorithm; for digital signature applica-

tions where a large message must be compressed securely
before being signed; an Internet standard

SHA-1 Secure hash algorithm (revised 1994), developed by NIST
SKIP Simple key management for Internet protocols
SSL secure sockets layer, TCP/IP security protocol
TCP/IP Transmission Control Protocol/Internet Protocol, commu-

nications protocols that connect Internet hosts
type safety Mechanism to ensure that an object of one type cannot be

mistakenly viewed as an incompatible type

.

For example, SSL and SKIP support different “flavors,” in
that the user has a choice of which algorithm to use for key
exchange and which to use for encrypting traffic. One flavor
would be to use Diffie-Hellman for key exchange and triple-
DES for traffic encryption.

However, some of these algorithms are proprietary, so it
is practically impossible to include them in a toolkit such as
JDK. This means that, as part of JDK, Java-based implemen-
tations of SSL and SKIP may be available in a limited num-
ber of flavors, while end-user products may bundle SSL and
SKIP in fuller flavors.

Flexible security policy. The sandbox as it stands now
is fixed and hard to change (and it is not meant to be
changed lightly). To allow for flexible security policies, we
must have mechanisms for supporting fine-grained authen-
tication and authorization.

Java will be deployed on a wide range of platforms, where
user authentication takes place in various forms—from sim-
ple password-based login to public-key technology with
hardware support. Therefore, we must allow multiple ways
to establish identity, but provide a uniform way to access
such identity information. One benefit of this approach is
that the Java runtime can support features such as single
sign-on and interface with legacy systems.

Authorization at runtime depends on many factors, includ-
ing the code base (whether it is local or remote, and which
hosts), whether the code is signed and by whom, and
whether we recognize and trust the signers. We envision
specifying a policy in terms of sets of permissions, where
any piece of code runs with a permissions set in effect.

The permissions format is typed in the sense that it allows
for extension and customization. For example, the follow-
ing are three permissions JavaSoft has specified to permit
reading a file, connecting to a specified host at a particular
port number, and exiting the Java runtime.

COM.JavaSoft File read path

COM.JavaSoft Net connect remoteIP:port

COM.JavaSoft Runtime allow system.exit

We expect that this format will evolve in the near future
and that we will publish a full specification for consultation.

Protection domains. A fundamental concept and impor-
tant building block of system security is called the protec-
tion domain.8 A domain can be scoped by the set of objects
that are currently directly accessible by a principal. A prin-

cipal is an entity in the computer system to which the sys-
tem grants authorizations (and, as a result, accountability).
The Java sandbox is an example of a protection domain with
a fixed boundary.

By default, the system must keep protection domains from
interacting with each other. Any permitted interaction must be
either through trusted system code or explicitly allowed by
the domains concerned. Often a domain supports inheritance:
a subdomain automatically inherits the parent domain’s secu-
rity attributes. In certain cases, however, the parent further
restricts the subdomain explicitly. Relaxing a subdomain is
also a possibility with the notion of trusted code.

Protection domains generally fall into two distinct cate-
gories: system and application. It is important that all pro-
tected external resources, such as the file system, the
networking facility, and the screen and keyboard, are only
accessible via system domains. Figure 4 shows the domain
composition of a Java runtime.

Each domain (system or application) may also implement
additional protection of its internal resources within its own
domain boundary. Because it is unlikely that the JDK sys-
tem can predict or enforce the semantics of such protection,
the protection system at this level is best left to the applica-
tion developers.

One example is a banking application, where the banking
software can support and protect internal concepts such as a
checking account, deposits, withdrawals, and so on. The
developer for the banking application can use the protection
domain primitive in JDK to run the application in a domain,
thus insulating the application from other applications. The
developer can also construct the system so that the handling
of each separate account runs inside a distinct subdomain,
thus ensuring that accounts cannot be accidentally mixed up.

For convenience, we can think of the system domain as a
single, big collection of all system code. For better protection,
though, system code can run in multiple system domains,
where each domain protects a particular type of resource
and has a special set of rights. For example, as shown in
Figure 5, file system code and network system code can run
in two separate domains, where neither has rights to the
other’s resources. With this arrangement, the risks and con-
sequences of an error or security flaw in one system domain
are more likely to be confined within its boundary.

May/June 1997 17

App 1 App 2 App n

System domain

Net I/O PrinterAWTFile I/O

Figure 4. Java runtime domain architecture.

App 1 App 2 App n

System domains

Net I/O PrinterAWTFile I/O

Figure 5. Separating system domains.

.

Multidomain computation. A thread of execution (not
necessarily tied to a single thread) may occur completely
within a single protection domain. Alternatively, it may
involve an application domain and also the system domain,
as shown in Figure 6.

For example, an application that prints a message must
interact with the system domain, which is the only access
point to an output stream. In this case, it is crucial that the
application domain does not gain additional permissions at
any time by calling the system domain. If it does, there can
be security implications.

In the reverse situation, a system domain invokes a
method from an application domain, such as when the AWT
system domain calls an applet’s paint method to display the
applet. In these situations, it is again crucial that the effec-
tive access rights are the same as current rights enabled in
the application domain at all times. The generalization is an
execution thread that can also traverse multiple protection
domains, as shown in Figure 7.

An exceptional case is when a piece of trusted system code
can temporarily exercise more permissions than are avail-
able directly to the application. This is necessary in some
cases. For example, a user cannot have direct access to the
password file, but can call a trusted system utility that
changes the password on the user’s behalf. In this situation,
the system utility must enter a special privileged mode.

The following are simple and prudent rules of thumb for
calculating permissions:

• The permission of an execution thread is the intersec-
tion of the permissions of all protection domains tra-
versed by the execution thread.

• When a piece of code in the execution thread has
entered its privileged mode, the intersection of permis-
sion is applied only to protection domains between the
privileged code and the end of the thread.

THIS ARTICLE HAS GIVEN A VERY BRIEF OVERVIEW
of Java’s basic security mechanisms—those existing, and some
planned for the future. We have chosen to describe in some
detail the design of the cryptographic library and the concept
of protection domain,10-12 but have not had room to elabo-
rate on other topics such as password-protected authentica-

tion protocols,13 access control and delegation,14-16 and secure
remote method invocation. We expect to report our design
and implementation experiences in future articles.

Acknowledgments
Ideas from decades of research in computer security influ-

enced the ideas presented here. It is unfortunately beyond
our ability here to give a complete listing of original publi-
cations or to thank by name everyone from whom we have
benefited in recent discussions.

This document is a purely technical discussion for the
wider Java community, and does not necessarily commit
JavaSoft to any particular features or implementations.

References
1. J. Gosling, B. Joy, and G. Steele, The Java Language

Specification, Addison-Wesley, Menlo Park, Calif., 1996.
2. T. Lindholm and F. Yellin, The Java Virtual Machine Specification,

Addison-Wesley, 1997.
3. J.C. Laprie, ed., Dependability: Basic Concepts and Terminology,

Dependable Computing and Fault-Tolerant Systems, Vol. 5,
Springer-Verlag, New York, 1992.

4. R.M. Needham, “Denial of Service: An Example,” Comm. ACM,
Vol. 37, No. 11, Nov. 1994, pp. 42–46.

5. P.G. Neumann, Computer-Related Risks, Addison-Wesley, 1995.
6. “Information Security: Computer Attacks at Department of

Defense Pose Increasing Risks,” US General Accounting Office,
Tech. Report GAO/AIMD-96-84, Washington, D.C., 1996.

7. M. Gasser, Building a Secure Computer System, Van Nostrand
Reinhold Co., New York, 1988.

8. J.H. Saltzer and M.D. Schroeder, “The Protection of Information
in Computer Systems,” Proc. IEEE, Vol. 63, No. 9, Sept. 1975,
pp. 1278–1308.

9. D. Dean, E.W. Felton, and D.S. Wallach, “Java Security: From
HotJava to Netscape and Beyond,” Proc. IEEE Symp. Research
in Security and Privacy, IEEE, Piscataway, N.J., 1996, pp.
190–200.

10. M.D. Schroeder, Cooperation of Mutually Suspicious
Subsystems in a Computer Utility, doctoral dissertation, Dept.
Electrical Eng., Massachusetts Institute of Technology,
Cambridge, Mass., 1972.

18 IEEE Micro

Security

Application

Method invocation

1. Systemany

Application2. Systemtrusted

Systemany3. Application

Figure 6. Execution involving two domains.

Some domain

Minimum rights

1.

Last domainany

Some domain

Trusted rights

2.

Last domaintrusted

Figure 7. Execution involving multiple domains.

.

11. A.K. Jones, Protection in Programmed Systems, doctoral
dissertation, Dept. Computer Science, Carnegie Mellon Univ.,
Pittsburgh, Pa., 1973.

12. W.A. Wulf, R. Levin, and S.P. Harbison, HYDRA/C.mmp–An
Experimental Computer System, McGraw-Hill, New York, 1981.

13. L. Gong et al., “Protecting Poorly Chosen Secrets from Guessing
Attacks,” IEEE J. Selected Areas in Comm., Vol. 11, No. 5, Jun.
1993, pp. 648–656.

14. B.W. Lampson, “Protection,” Proc. Fifth Princeton Symp.
Information Sciences and Systems, Princeton University,
Princeton, N.J., 1971. Reprinted in ACM Operating Systems
Review, Vol. 8, No. 1, Jan. 1974, pp. 18–24.

15. J.H. Saltzer, “Protection and the Control of Information Sharing
in Multics,” Comm. ACM, Vol. 17, No. 7, Jul. 1974, pp.
388–402.

16. B. Lampson et al., “Authentication in Distributed Systems:
Theory and Practice,” ACM Trans. Computer Systems, Vol. 10,
No. 4, Nov. 1992, pp. 265–310.

Li Gong joined JavaSoft from Stanford
Research Institute as Java security archi-
tect. His research interests include dis-
tributed systems and networking,
especially security and fault tolerance
issues.

Gong received the PhD degree from
the University of Cambridge, England, and the 1994 IEEE
Communications Society Leonard G. Abraham award. He
served as program cochair of the third and fourth ACM
Conferences on Computer and Communications Security and
as program chair of the seventh and eighth IEEE Computer
Security Foundations Workshops. He is currently program
cochair of the 1998 IEEE Symposium on Security and Privacy.
He is an associate editor of ACM Transactions on
Information and System Security and is on the editorial board
of the Journal of Computer Security. He is a member of the
IEEE and the ACM.

Direct questions concerning this article to Li Gong,
JavaSoft, MS UCUP02-102, 2550 Garcia Ave., Mountain View,
CA 94043-1100; gong@eng.sun.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 153 Medium 154 High 155

May/June 1997 19

Adventures in the Mainframe Trade:
An interview with Gene Amdahl

In its April-June issue, IEEE Design & Test interviews

computing pioneer and industry titan Gene Amdahl, father

of IBM’s System/360 and founder of Amdahl Corporation,

Trilogy Systems Corporation, Andor International, and

Commercial Data Servers. Amdahl talks about

■ IBM in the 1950s
■ Amdahl Corporation and Fujitsu
■ pipelines: how deep is too deep?
■ how mainframes can withstand the Pentium attack
■ the validity of Amdahl’s law

D&T Editor-in-Chief Ken Wagner’s interview with Gene

Amdahl provides a firsthand account of this remarkable

career and a unique perspective on the state of the

industry and the future of mainframes.

To order the April–June issue of IEEE Design & Test,
or to subscribe, call (714) 821-8380

or fax (714) 821-4641

Now In Stock!
Digital Design and
Modeling with VHDL
and Synthesis
by K.C. Chang, Boeing

Combines VHDL and synthesis in an
easy-to-follow step-by-step sequence.
This approach addresses common
mistakes and hard-to-understand

concepts in a way that eases learning. The text introduces
VHDL with closely related practical design examples,
simulation waveforms, and schematics so you can better
understand their correspondence and relationship. This book
is the result of K.C. Chang's extensive experience in both design
and teaching. Many of the design techniques and design
considerations, illustrated throughout the chapters, are
examples of real designs.

Included with the book are numerous examples of real,
complete working code for practical applications with
simulation waveforms. A special web site is set up containing
code and instructor's materials to enhance its value as a
classroom text: http://computer.org/books

368 pages. 7" x 10" Hardcover. 1997. ISBN 0-8186-7716-3.
Catalog # BP07716 — $45.00 Members / $55.00 List

Call toll-free:
+1.800.CS.BOOKS

Online Catalog:
http://computer.org

.

