
Trust Management and Proof�Carrying Code in

Secure Mobile�Code Applications

A Position Paper

Joan Feigenbaum
AT�T Labs

Murray Hill� NJ �����
jf�research�att�com

Peter Lee
Carnegie Mellon University

Pittsburgh� PA ����	
petel�cs�cmu�edu

DARPA Workshop on Foundations for Secure Mobile Code
March �
���� ����

� Introduction

The popularity of the Java programming language and the concomittant media
attention given to the �security holes� that have been found in the Java run�
time system have brought the problem of mobile�code security to center stage
in the computer science research world� In this essay� we describe how the
concepts of trust management and proof�carrying code might be used in mobile�
code applications to provide greater security than is a�orded by Java and other
current technologies� We begin by giving our view of what the mobile�code
security problem is and how it both resembles and di�ers from security problems
that existed in the pre�Java world� We then brie�y explain two approaches
to mobile�code security� trust management and proof�carrying code� �More
complete explanations of these approaches can be found in 	
� �� ��� Although
both of these approaches are only in embryonic stages of development� we believe
the early experimental results give some basis for speculating on larger�scale
applications� With this in mind� we look at three scenarios in which mobile
code may be deployed�programmable network switches� electronic commerce�
and agent interactions�and show how trust management and proof�carrying
code might be brought to bear�

� The Mobile�Code Security Problem

The essentials of the mobile�code security problem are these� A host computer
receives a data object �the �mobile code��� from an external source along with

�Sometimes also referred to as the �executable content��






a request to execute it in one of the host�s execution contexts� The host must
decide whether or not to honor the request� Potential reasons not to do so vary
from host to host� just as the precise meaning of �computer security� varies
widely from context to context� A host may be concerned about a number of
potential consequences of executing a particular piece of mobile code� such as�

� damage to the host�s �le system� e�g�� modi�cation or removal either of
data �les or of already�resident executables

� excessive use of the host�s resources� such as cpu time or main memory� to
the point that the mobile code e�ectively disables other processes running
on the host

� leakage of private information belonging to the host�s established users�
Such leakage could be intentional and malicious �e�g�� the mobile code
could have been written to accomplish theft of information� or it may be
unintentional and have unknown consequences �e�g�� the mobile code or
some other program with which it communicates could have a bug in its
crypto module��

� access that the mobile code� once it begins running on the host� may gain
to a company intranet or some other private network to which the host is
connected

Note that these threats to hosts existed before the popularity of mobile code in
general and Java applets in particular� When a person downloads a program
from a web page or inserts a �oppy disk in the host�s disk drive and runs it� often
giving it access to all of the host�s resources� the same threats are introduced�
Some assert that it is the responsibility of the person who runs the downloaded
or �oppy�disk�transported program to examine it �rst and to make sure that
it will not damage the host� It is our view that this responsibility is more
honored in the breach than in the observance and hence that mobile code does
not present wholely new security threats�

What is new today is the scale of these threats� The promise of Java and
other forms of mobile code is that there will be a huge number of mobile pro�
grams� performing a huge array of tasks on a wide variety of host types� and
created by a huge diversity of programmers �who presumably exhibit a huge di�
versity of competence and honesty�� Thus the semblance �which may not always
be the reality� of security provided by shrink�wrapped packages or familiar web
sites of a small number of software vendors disappears� Hosts will be receiving
programs from diverse and unknown sources and will need to decide whether to
trust them�

In response to the need to verify trustworthiness of mobile programs or their
sources� one often hears the advice �use digital signatures� or �use authentica�
tion�� Although signatures� authentication� and other cryptographic building
blocks can play a role in securing mobile code� they cannot do the entire job�
To authenticate someone or verify his signature� one needs prior knowledge of
him� However� mobile programs may be authored by someone of whom a host

�



has no prior knowledge� and we do not want to rule out the running of such
programs� More generally� the signer or source of a mobile program can only
�sign o� on� properties of the program� He cannot attest to any properties of
the host�s environment� and these are presumably crucial inputs to the decision
about whether the program should be run in this environment�

� The Importance of Language in Mobile�Code

Security

At its most basic� the problem for the host is to determine whether some set of
properties holds for a mobile program that is delivered to it� We refer to these
as the �safety properties�� of which there are many di�erent kinds� depending
on the application and host requirements� Some properties are assertions about
about the behavior of the mobile code� for example� The program will only
perform actions in the set X� will never perform any action in the set Y � will
only perform an action in Z at most W times� and so forth� Other properties
say little or nothing about the intrinsic nature of the mobile code but rather
address issues of trust and accountability� Examples of this type of property
include� The program was authored by X� was inspected by Y who declares
that it has property Z� and so on� It is our view that both kinds of properties
will be needed in many mobile�code applications�

No matter what kind of properties are required� in order to have a truly
secure system it is necessary to prove� to some strong degree� that the properties
hold� The di�culty is that it is often expensive or even impossible for the
host to �nd a proof from just the code alone� Behavioral properties are often
undecidable or intractable� and trust properties often involve the establishment
of identity and maintenance of complex trust relationships� This means� at the
very least� that the producer of the mobile code must do at least some of the
work of �nding a proof and then transmit the results of this work to the host
along with the code�

In our view� the use of formal language is critical in supporting this mode of
operation� Since the host and the mobile�code producer must work cooperatively
to prove that the code is trustworthy� the host needs a language for specifying
the security policy and communicating this speci�cation to all potential code
producers� Since the code producer will have to do some of the work of �nding a
proof� it must have a language for communicating the results of this work to the
host in such a way that the host can easily check it for validity� Even the rules
for validity checking have to be shared between the host and the code producer�
and so this too is best accomplished via a language�

Not surprisingly� both trust management and proof�carrying code are based
on the use of formal language to address the problem of mobile�code security�
We now give brief descriptions of these approaches� More complete descriptions
are given in 	
� �� ��

�



��� Proof�Carrying Code

Proof�carrying code �PCC� is a mechanism that supports the construction of
easily checkable mathematical proofs of program properties� as well as the formal
speci�cation of behavioral safety properties� Using PCC� the code producer
is obligated to prove formally that the program has the host�speci�ed safety
properties� Once this is done� the proofs can be written out and sent along with
the code to the host� The host can then quickly validate with certainty that the
proof does indeed establish the speci�ed safety properties� For more information
about the applications and principles underlying proof�carrying code� see 	�� ��

PCC works by encoding the proofs in a language based on the typed ��
calculus� called LF 	��� The encoding is performed in such a way that checking
the validity of a proof reduces to typechecking in LF� In practice� typechecking
LF is fast� and so almost all of the burden of constructing the proof is shifted
to the code producer� The code producer has several options for constructing
proofs� including use of a theorem prover� a special �certifying compiler�� or even
hand�construction of a proof by a human� The host is oblivious to the means
by which the proof was obtained �or even whether or not the proof�constructor
is correct��� relying only on the LF typechecking for validating the proof� In
this sense� PCC attempts to minimize the amount of external trust required
in the system� no certifying authorities are needed for proof validation� and
the only trusted software in the entire system is the typechecker� The current
typechecker is small and easy�to�trust� being written in about � pages of C code�

��� Trust Management

Trust management is an approach to making cryptographic tools more useful�
The most general de�nition of trust management is policy�controlled processing

of standardized metadata� using trusted third parties� We will �esh out what
this de�nition means in the mobile�code context� For more information about
trust management in other domains� refer to� e�g�� 	
� �� �� ��

Policy control is the way in which the individual characteristics of the host�s
environment are formally encoded in a security policy with which all incoming
mobile programs must comply� The trust�management task is to decide whether
the metadata� or �credentials�� associated with an incoming mobile program P

constitute a proof that P complies with the host�s policy� By metadata� we
mean anything that is used in the decision�making process besides P itself�
Important examples of metadata include digital signatures by trusted parties�
public�key �certi�cates� guaranteeing the validity of signature�veri�cation keys�
PCC proofs 	�� �� and information about the path travelled by P before it
reached the host� Finally� trusted third parties are those whom the host trusts
to make certain statements without supplying proofs that they are true� For
example� a company C may be in the business of certifying that executable
�les are virus�free� A host that has had positive experience with C �or has
been referred to C by some other host whom it trusts to make this type of

�Actually� a variation on LF� called LF�� is used in our current system�

�



referral� may regard C�s signature on P as �proof� that P is virus�free� Note
that even this straightforward example demonstrates that trust management
can be intricate and subtle� The host needs a language in which to express
all relevant trust relationships �e�g�� C is trusted to certify virus�freedom� but
not necessarily to certify correctness or speed�� the veri�cation of C�s signature
requires an uptodate copy of C�s public key� etc�

� Case Studies

For concreteness� we now consider three scenarios involving mobile code�

��� Electronic Commerce

The term electronic commerce refers to a broad range of applications� some of
which may involve mobile code� For example� parties A and B may be long�
standing trading partners� �Think of a manufacturer and its regular suppliers
or a consumer and her regular service�provider�� In order to automate the
transactions they do most often to the fullest extent possible� A may want to
permit B to dispatch mobile code that runs on A�s machine� in order to update
A�s records� install new releases of relevant software� perform audits� etc� In
a very simple model� A may trust B unconditionally and be in a position to
exchange and store cryptographic keys securely� thus all A would need to do is
check B�s signature �using the copy of B�s public key that it has obtained and
stored securely� on an incoming program P and� assuming that the signature is
valid� allow any computer under A�s control to host P � More realistically�Amay
trust B only under certain conditions� e�g�� if B is A�s accountant and has been
so for years� A may trust B only to dispatch programs that handle accounting
functions �but may give B unconditional trust within this accounting domain��
In that case� A would require metadata consisting of B�s signature and a proof
that P really is an accounting program�

Note that even this relatively simple example involves nontrivial computa�
tion� A must be able to encode in a security policy the de�nition of an �account�
ing program� and communicate this de�nition to B� B must then construct a
proof �encoded in LF� that the program sent to A is an accounting program�
Finally� A must have the ability to validate proofs that programs satisfy the
de�nition�

In general� A will want to trade with many other parties and will not be
able to meet all of them in advance and perform �set�up� functions such as the
exchange of cryptographic keys� A natural way to accomplish this is to defer
trust to a third party C �or several such parties� who performs the role of a
�reputation server�� Before running a mobile program P allegedly sent by B�
A may require metadata signed by C that provides a valid public key for B� a
property S of programs thatB is allowed to �sign o� on�� and a statement signed
by B �and veri�able using the good key obtained from C� that P has property
S� Note that the problem of deciding whether P indeed has property S has

�



been �nessed� C has certi�ed not only that B sends around good programs in
domain S but also that B can be trusted not to lie about whether a the domain
of a particular program actually is S� If for some reason C�s certi�cation is not
good enough� then again host A will have to insist that B use PCC to attach a
proof that its programs are indeed are in domain S�

��� Active Networks

The notion of an active network switch was proposed by Tennenhouse and
Wetherall 	� and is now the basis for a major DARPA research initiative� The
basic idea is to allow users to inject programs into the nodes of a network� even
the Internet� This would be accomplished by enclosing fragments of mobile
code into each network packet� to be executed at each router and switch that
the packet encounters on its way to its �nal destination� Besides allowing users
and groups of users to load customized communication protocols into the Inter�
net� active networks seem to provide a means for better support multicast and
broadcast applications� essentially by o�oading some of the communication�
processing workload into the interior nodes of the network�

In a basic sense� the notion of active networks is a return to timeshared com�
puting� and so trust management could be employed to arrange for certifying
authorities that provide users with access to particular active network switches�
There are two complicating factors� however� First� since the mobile code is en�
closed with network packets� the code producers are largely anonymous� Hence�
there is little chance that every active network switch in the Internet will be
able to exchange cryptographic keys securely with every potential user� Second�
there may be a huge number of users� and furthermore the programs that users
want to run might be performance�critical� A typical example is a user who
uploads into a network switch a program to do translation of video streams to
suit the needs of the recipients of the video� In 	�� the performance factor leads
to a design in which the mobile code actually runs in the unprotected kernel
address space� and hence the code must be guaranteed not to corrupt the net�
work switch�s operating system� Proof�carrying code addresses these needs by
forcing users to prove the safety of their programs before being allowed to ex�
ecute them on the network switches� Furthermore� the proof�checker is largely
oblivious to the language in which the mobile code is written� thereby allowing
even hand�coded assembly language to be used�

In special cases in which the PCC proof of a property would take too much
time to verify or the desired property is actually unprovable� the switch could
demand that the mobile program be signed by a trusted third party�

��� Agents

The term agent is meant to connote an autonomous program that roams the
Internet looking for hosts in which it can run�to its advantage and� in the best
of worlds� to the host�s advantage as well� Thus an important point about trust
management for agent interactions is that it will seldom be the case that trust

�



decisions can rely heavily on previously acquired information about the agent�s
author� indeed� it may be inherent in the overall goal of both agent and host that
the agent�s author be completely unknown to most or all hosts that the agent
encounters� This suggests the use of PCC� For some security policies� the proofs
enclosed with the mobile programs would be completely self�contained� thereby
allowing the ultimate in mobility� If each potential host on the Internet had
an LF typechecker and agreed on a common set of safety properties for agents�
then agents could be checked for the relevant properties� and the identities and
quali�cations of their creators would not be needed� The compactness of proof�
carrying code and the speed with which PCC proofs can usually be veri�ed
make this a very desirable approach when feasible�

Because it will not be feasible to require all potential hosts to agree on an
exhaustive set of safety properties� agent�based applications may rely heavily on
trusted third parties� The service performed by third party C is to examine an
agent P � write an auxiliary program P � the function of which is to probe a host�s
environment to check whether it has the features needed to run P safely� and
digitally sign �P� P ��� When a host receives such a pair �P� P ��� it checks that the
signature was created by one of the C�s in whom it has established trust �and
for whom it has a valid public key� and� if this check succeeds� runs the probe
P �� Only if P � says �ok to run P� does the host do so� This scenario illustrates
an important feature of trust management systems such as PolicyMaker 	

and REFEREE 	�� These systems support programmable metadata such as the
auxiliary programs P �� Note that it is not only the host that �relies heavily
on trusted third parties�� Creators of agents will rely on these parties as well�
Those who hope to collect money from hosts will have strong incentives to have
their agents certi�ed by third parties who are widely known and trusted�

References

	
 M� Blaze� J� Feigenbaum� and J� Lacy� �Decentralized Trust Management��
in Proceedings of the 
�th Symposium on Security and Privacy� IEEE Com�
puter Society Press� Los Alamitos� 
���� pp� 
���
���

	� M� Blaze� J� Feigenbaum� P� Resnick� and M� Strauss� �Managing Trust in
an Information�Labeling System�� to appear in European Transactions on
Telecommuncations� Available in preprint form as AT�T Technical Report
���
��
�

	� Y��h� Chu� J� Feigenbaum� B� LaMacchia� P� Resnick� and M� Strauss�
�REFEREE� Trust Management for Web Applications�� to appear in Pro�
ceedings of the �th World Wide Web Conference� Santa Clara CA� April

���� Available in preliminary form as AT�T Technical Report �����
�

	� R� Harper� F� Honsell� and G� Plotkin� �A Framework for De�ning Logics��
Journal of the Association for ComputingMachinery� vol� ��� no� 
� January�

���� 
���
���

�



	� R� Levien� L� McCarthy� and M� Blaze� �Transparent Internet E�mail Secu�
rity�� http���www�cs�umass�edu� lmccarth�crypto�papers�email�ps

	� G� Necula and P� Lee� �Safe Kernel Extensions Without Run�Time Check�
ing�� in Proceedings of the �nd Symposium on Operating System Design
and Implementation �OSDI����� Seattle� October� 
���� ��������

	� G� Necula and P� Lee� �Proof�Carrying Code�� Technical Report CMU�CS�
���
��� School of Computer Science� Carnegie Mellon University� Septem�
ber� 
����

	� D� Tennenhouse and D� Wetherall� �Towards an Active Network Architec�
ture�� Computer Communication Review� vol� ��� no� �� April� 
����

�


