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Abstract

The traditional solution to protect the host systems from malicious mobile code is a combination of verification and monitoring. In this paper, we describe BRSS, our alternative solution to mobile code security. BRSS integrates binary rewriting with proxy caching techniques. It allows the system administer to enforce security policies at the level of administrative domain by using binary rewriting proxy servers.  

The contributions of this paper are: (1) we designed a general framework that can efficiently manage mobile code with security policies and support a variety of binary rewriters; (2) we built a prototype of binary rewriting proxy; (3) we conducted a study on Internet traffic focusing on the traffic characteristic of Java applets; (4) we did a comprehensive performance evaluation of our prototype system. The results show that adding binary rewriting to the proxy server doesn’t compromise overall performance and the overhead added by binary rewriting will easily be amortized by the caching techniques.
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1.  INTRODUCTION

Mobile code is the code that can be transmitted across the network and executed on the recipient’s end. Java applets are the most common form of mobile code. They are usually embedded in web pages and automatically downloaded and executed in the users’ web browsers without their attention. Failure to properly secure mobile code may cause security threats to the host system, such as damage to the file system, excessive use of resources and leakage of private information [1]. Not only could untrusted code be created with malicious intention, but also it could be the result of unintentional code authors. Programming errors with security implications can be utilized by attackers [2]. The buffer overflow problem, in which the overflowed content can overwrite existing data, instructions, returned address in the memory, is such an example.  

Traditional solutions to mobile code security have been brought out from the operating system side. They employ a host security system that monitors a mobile program’s behavior and determines whether it is granted or rejected access to resources according to some predefined security policies or administrative policies. For example, in Kernel Reference Monitor [7], the kernel is the only software trusted to access the critical system data structures and consequently all access requests to critical data is handled by the kernel through system calls. In Java [8], however, security is enforced by three critical components. The byte-code verifier checks the untrusted code to make sure that it does not violate memory safe properties. The applet class loader ensures that the Java classes are separated in different name spaces and tagged properly with security information such as the code’s origin and digital signature. The security manager acts as the reference monitor to enforce run time checks. 
Our alternative solution to mobile code security utilizes binary rewriting techniques. It has several advantages over the traditional solutions. First of all, it supports security policies that can not be easily enforced by the traditional security mechanisms. Usually host security system only provides general security rules. For example, the security mechanism of Java2 platform does not permit an applet to write to and read from local files without explicit access permission granted by a policy file. It is hard for it to enforce the security policy such as “no sending messages after reading specific files”. Instead, using binary rewriting techniques, such a security policy can be easily enforced by adding security checks to the mobile code. Once it is found that the mobile code reads some information from some specific files, its message send function will be prohibited. Thus it can be easily customized to satisfy end users’ special security requirements. Secondly, such a binary rewriting system is independent of the host security monitoring system. For example, the binary rewriter, PoET (Policy Enforcement Toolkit) can merge security policies into the binary code by itself. The code then executes under the constraint set by the reference monitor inserted in the code. Such characteristic is especially beneficial to the systems that have tight constraints on power consumption and memory capacity. For example, for some embedded real-time applications, it is expensive to run security monitoring systems. Finally, the enforcement of security policies on some traditional systems relies on the support of the host platform, for which changing a security policy might result in the malfunction of the host security system. For example, programs expecting Java2’s stack inspection policy to be enforced can not execute on earlier-generation implementations [6]. On the other hand, the code after being rewritten can be executed securely despite the version of the host system.

In this paper, we present our mobile code security system (called BRSS, Binary Rewriting Security System) that utilizes existing binary rewriting techniques to provide mobile code security. The binary rewriter we currently support in BRSS is PoET [6], developed at Cornell University. By combining binary rewriting with the Apache caching proxy server, BRSS builds a general framework for binary rewriting proxy servers. At the same time, BRSS enhances its usability and functionality by providing efficient management of security policies and mobile code. We did a comprehensive content filtering type of performance evaluation to analyze the impact of adding binary rewriting to proxy servers. For that purpose, we also conducted a study on the traffic model of Java applets. Our goal, however, is to design and build a research prototype for such binary rewriting proxies and at the meantime to verify that adding such a system actually doesn’t add much performance overhead to the proxy server.

This paper is structured as follows: Section 2 introduces the background of binary rewriting techniques to security. Section 3 describes the BRSS system, its architecture and implementation. Section 4 gives the performance evaluation. Section 5 discusses related work, followed by conclusions in Section 6.

Binary Rewriting Techniques to Security

A binary rewriting system transforms a binary program into a different but functionally equivalent program [3]. Because it requires no knowledge of the source code, binary rewriting has been widely used in the area of code migrations across different processor architectures, performance instrumentation and program optimization, such as optimizations on code speed, size and power consumption [9]. There are different kinds of binary rewriting systems for a variety of purposes. UQBT[9] is a static binary-translation framework that supports migrating legacy applications across various processors, including CISC, RISC and stack-based machines. Squeeze++[4] is a system that compacts and optimizes code and data from binary programs for the Alpha/Tru64Unix platform. Etch [10] is a general-purpose tool for rewriting arbitrary Win32/x86 binaries and supports general transformations based on optimizing their performance. ATOM [12] is a general tool-building and code-instrumenting infrastructure that runs on Alpha machines (RISC architectures). EEL[13] is a C++ Executable Editing Library operating on SPARC processors and is used for editing object files, archives and linked executables. The Byte Code Engineering Library (BCEL) [11] is a toolkit for the static analysis and dynamic creation or transformation of Java class files. DynInst [16] is a component middleware designed primarily for dynamically debugging, performance monitoring and application composition out of existing packages for target instrumentation.

In mobile code security area, many language-based approaches have been proposed to deal with the buffer overflow problem since it is most commonly seen and dangerous attack [18]. However, most of them rely on compile time analysis and transformation, run-time interception and checking, and also the sandboxing techniques. Typically, Return Address Defender (RAD) [14] protects buffer overflow attack by adding protection code into the prologue and epilogue of the program at the compile time and the code added is used to save and check if the return address has been changed during the function call. Stackguard [18] and Microsoft Compiler Extension [19] use “canary words” to check the integrity of return address. IBM’s GCC Extension [20] uses a guard variable, a random number, to protect the stack. Libsafe [21] is based on a dynamically loadable library that intercepts all function calls made to library functions that are known to be vulnerable. A wrapper function is used to check the length of the source string and check it against the upper bound on the length of the destination string based on the current frame pointer value. Libverify [17] library protects return addresses on the process stack by saving canary values at the start of a function and verifying the canary value at the end of function to determine if any buffer overflow occurred. Differently from the above, Software Fault Isolation (SFI) [24] uses the idea of Address Sandboxing to enforce system security. It first loads a distrusted module’s code and data into a logically separate portion of the application’s address space and then inserts checking code before every unsafe instruction at the compile time to prevent it from writing or jumping to an address outside its fault domain.

Accordingly, many real binary rewriting techniques are proposed that directly operate on the binary code without requiring access to program source code, symbol tables or relocation information. For example, the Binary-Rewriting RAD [15] extends the work of RAD and employs static binary translation directly on the existing binaries against buffer overflow attacks. The system uses a combined disassembly techniques to identify the boundary of every procedure in the input program. The protection code is appended to the end of the original binary. It inserts the code at the function prolog to save a copy of the return address and the code at the function epilog to check the return address on the stack with the saved copy. Some instructions at the function prolog and epilog are replaced by a JMP instruction to redirect the control to the inserted code at a function’s prolog and epilog. Purify [25], detects run-time memory leaks and access errors by inserting checking instructions directly into the object code and before every load or store. To detect memory access errors, Purify maintains a state code for each byte of memory and a run-time check is enforced by the checking instructions whenever time the program makes memory access. To make binary analysis and rewriting efficient, SELF [21] proposed a transparent security enhancement to ELF binaries by adding an extra section. The extra section contains information specifically needed for binary analysis and hence convenient to perform many security-related operations on the binary code. 

Comprehensive binary rewriting security systems appeared when binary rewriting techniques were used to enforce security policies specified by host system requirement. The benefit provided by such security systems is the flexibility to enforce security policies that are not supported by the standard security mechanisms [26]. Notable such systems are Naccio [22], SASI [23] and PoET [6]. Naccio allows the expression of safety policies in a platform-independent high level language and applies these policies by transforming program code. A policy generator takes resource descriptions, safety policies, platform interface and the application to be transformed and then generates a policy description file. This file is used by an application transformer to make the necessary changes to the application. The application transformer replaces system calls in the application to functions in a policy-enforcing library. Naccio has been implemented for both Win32 and Java platforms. Security Automata SFI Implementation (SASI) [23] uses a security automaton to specify security policies and extends the idea of software fault isolation by merging security policy into the application itself. The security automaton acts as a reference monitor for the code. In relation to a particular system the events that the reference monitor controls are represented by the alphabet, and the transition relationship encodes the security policy enforced by the reference monitor (so called IRM, Inline Reference Monitor). The security automaton is merged into application code by an IRM binary rewriter. It adds code that implements the automaton directly before each instruction. The rewriter is language specific and SASI is the implementation for x86 machine code. 

PoET (Policy Enforcement Toolkit) [6] is an implementation of Inline Reference Monitor (IRM) [5] for java applications. It does not require any source code information available and the code after being rewritten can be executed on any version of JVM. It uses relatively higher level, event-oriented, java-like language to specify security policies, which is called PSLang. Specifying a security policy mainly involve defining [5]: Security events that to be mediated by the reference monitor; Security state that stored about earlier security events and is used to determine which security events can be allowed to proceed; Security updates that update the security state, signal security violations and/or take other remedial action when the related security event happens. PoET adds the security enforcement before the instructions specified in the security policy. 

3.  BRSS: Binary Rewriting Security System

In this section we describe the BRSS security management system focusing on its architecture and implementation. 

3.1   Overview

BRSS works on and together with caching proxy servers. It enhances end system security by monitoring and rewriting the mobile code that flows by the proxy to satisfy security requirements specified by end systems. The flow of data is simple: BRSS stores away security policies that are required by the end systems. Such security policy could be a comprehensive set of security policies that cover the general security concerns of the end systems such that they does not have to be concerned about spending more system resources to take care security problems. Or it could be some special security concerns or requirements that can not be enforced by current operating system security mechanisms. BRSS has the binary rewriter run in background and preloaded with a specified set of security policies. When mobile code is first requested by a client, the code is intercepted and filtered out by BRSS when it flows by the proxy. A notification is sent to the binary rewriter and security policies are applied to it on-the-fly. The code after being rewritten is then pushed back into the data flow, which is also cached (if it is cacheable) in the proxy and distributed to the client afterwards. Subsequent requests for the same applet can be satisfied by the rewritten code in the proxy cache. BRSS’s changes are mostly transparent to the cache. The cache’s job remains unchanged and the cache validation is handled by the cache as it usually is. 

3.2 System Architecture and Implementation

As shown in Figure 1, BRSS has four parts: Binary Rewriter, Database, Application Management, and Policy Editor. We implemented the BRSS system based on Apache caching proxy server. There are no particular reasons for choosing Apache proxy server and the BRSS system can also be implemented on other caching proxy server, such as the Squid [30]. Our goal, however, is to build and testify such an application prototype. 
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Figure 1. BRSS system architecture

3.2.1 Binary Rewriter

The binary rewriter module is built to support various kinds of binary rewriter. Currently, BRSS supports PoET as its binary rewriter. PoET is a command-line tool with high initialization overhead caused by java initialization and parsing and loading security policies into memory. We slightly revised PoET to have it run in the background and preloaded with security policies to be enforced. Two buffers, the receiving buffer and output buffer are used to provide the binary rewriter with the input and output destinations. The receiving buffer accepts and buffers the binary code file flow. Once a binary file is completely buffered, a notification will be sent to the binary rewriter, which will in turn rewrite the code in the receiving buffer and output the secured code into the output buffer. The rewritten files in the output buffer will be pushed back to the data flow. More hashing functionalities could be added into this process in case the code is secured with some hashing functions. 

/*pull out the ".class" binary file for rewriting*/

static ap_filter_rec_t *security_in_filter_handle;

/*register the filter*/

static void register_hooks(apr_pool_t *p)

{

    security_in_filter_handle = ap_register_output_filter("SECURITY_IN", security_in_filter, NULL,   AP_FTYPE_CONTENT_SET - 3 );

}

/*analyze the url*/

static int cache_url_handler(request_rec *r, int lookup)

{

            // add the security filter to pull out .class file for Rico rewriting

            ap_add_output_filter_handle(security_in_filter_handle, NULL,r, r->connection);

}

/*seucrity filter*/

static int security_in_filter(ap_filter_t *f, apr_bucket_brigade *in)

{

    //if it’s the “.class” file, pull the binary code out

    rv = pull_data_out(f, cfg, in);

}

/* pull out the class file; Notice that a class file may be composed of several brigade  */

static apr_status_t pull_data_out(ap_filter_t *f, security_cfg_t *cfg, apr_bucket_brigade *b)

{

                //send notification to PoET

                if ( notify_PoET(cfg->filename) > 0)

                {



…


       //after being rewritten , the code is push back to the data flow;

                        if ((rv = push_data_in(cfg, f,r->pool, b))!= APR_SUCCESS) 


        {



…         }


}

    }
A content filter is added into the proxy server to identify and filter out the binary code traffic. Apache proxy uses a filter mechanism, in which a Web document consists of several pieces of information. Each piece of information will be processed at one filter before it is passed to the next. We thus added a security output filter before all the other output filters to pull out the binary code into the receiving buffer. The java applet traffic can be easily identified by analyzing it URL. A skeleton of the filter is shown in Figure 2.

Figure 2. The skeleton of the content filter added to Apache 2.0.
3.2.2 Database

BRSS uses database to store two type of data: the security policies and the binary code version management. First of all, the database stores the information about different sets of policies that the binary rewriter will preload by default. These sets of policy are according to the different level of security requirements by the end user systems. Thus in the BRSS system, security policies can be differentiate into different groups. The BRSS database organizes the security policies into several categories, such as file system, network communication, memory usage, and etc. It also has learning capability, being able to keep record of the frequency of each policy file that has been applied. The policy weight will go up as the frequency a rule is applied or encountered increases. Using this information, the database is capable of providing recommendations to users on which policies to use in a specific field. In addition, policy conflict may arise when multiple security polices are applied to one single binary code. It is accepted to be a hard problem. The database preliminarily solves this problem by scanning each policy file when combine them and renaming the conflicted variables. 

The other functionality of the database is to provide the history of changes made to binaries that are rewritten. This acts much like a version management system such as CVS or RCS managing security policy application to binaries. When binaries are downloaded from the Internet, they are stored into the BRSS database in their original form. BRSS records all modifications that have been made to each binary, i.e. the security polices that have been added to it. Successive application of different security predicates can be applied to binaries in different versions. Therefore, the original code or variations thereof can be reverted to at any time.

3.2.3 Application & Management 

BRSS enhances the usability of the system by providing a graphical user interface for policy application and database management. Three main functional modules are provided: Policy file management: With this module, users can perform policy management operations such as delete, add, view, edit and group. Policies application: In this module, policy files and binaries available in the database are listed. Users can conveniently construct and select a set of policies and have it preloaded by the binary rewriter. Binary Version Management: the different versions of binary code are listed in hierarchy together with the security policies application information. 
3.2.4 Policy Editor

Binary rewriter provides the flexibility by operating directly on platform APIs. However, it complicates the security policy creation. It’s hard for system administrators to compose a good security policy without expert knowledge of platform information. (for PoET, this means a profound grasp of Java Virtual Machine Library (JVML) ). Thus the goal of the BRSS policy editor is to simplify security policy creation by providing an abstract level between the detailed JVML and the policy editor. This layer summarizes and abstracts JVML resources and will be dynamically deployed by the BRSS editor. On this aspect, we take the idea from Naccio, which maintains an intermediate resource object. 

Performance Evaluation
In this section, we study the performance effect of adding BRSS to an Apache proxy. We chose web polygraph [31] as our benchmarking tool. In order to generate the real applet file traffic we conducted a research on applet traffic characteristics by analyzing the raw proxy cache access logs. We compared the proxy’s performance with and without the BRSS system under different request rates and cache sizes. We then further analyzed the overhead focusing on java applet traffic.
1. Web Polygraph and the Workload Model

Web polygraph is a widely accepted and freely available proxy benchmark. It is designed more suitably for caching proxy benchmarking. Most importantly, it has the capability to generate real content traffic, which is crucial for testing our binary rewriting system. Besides, its latest workload model, Polymix-4, includes many key web traffic characteristics, such as synthetic workload composed of various content types, specified request rates and inter-arrival times, a mixture of cache hits and cache misses, and etc. Table 1 summarizes the content types that the web polygraph server uses for benchmarking. The server hosts mainly three content types (i.e. image, HTML, download.) with specific file extensions. All the others are included in the ‘other’ type with no file extensions. In order to test our BRSS system, we also need the server to generate real applet file traffic. We will describe in detail our applet request traffic model used in the next section. The size models of each content type listed in table 1 are generated by analyzing unique file size transportation from the web proxy log [32].Table 2 lists the default parameters of the polymix-4 workload model. If not specially stating, we use the polymix-4 workload model by default. 

Table 1. Content type the web polygraph server uses. 
	Type
	Percentage
	Reply Size Distribution
	Cachability
	Extensions

	Image
	65%
	Exponential(4.5KB)
	80.00%
	.gif, .jpeg, and .png

	HTML
	15%
	Exponential(8.5KB)
	90.00%
	.html and .htm

	download
	0.5%
	Log-normal(300KB, 300KB)
	95.00%
	.exe, .zip, and .gz

	Other
	19.5%
	Log-normal(25KB, 10KB)
	72.00%
	


Table 2 the default parameters of the workload model.
	Client request rate
	0.4 secs

	Number of transactions per connection
	Zipf (64)

	Request types
	IMS: 20% Reload: 5% Basic 75%

	Server delay
	40 millisecond/packet

	Server think time
	Normal distribution (2.5, 1)


2. Applet File Traffic Model
Literally many studies have been performed on the internet traffic characteristic. However, specific analysis upon java applet file traffic has never been seen despite its potential security threat to operating systems. In this section, we present our analysis result based on the raw log analysis. 
Raw Data Collection

We used the raw access logs and daily summary reports provided by the IRCache project [33] to generate the applet traffic. IRCache is the NLANR Web Caching project, funded by the University of California San Diego, in cooperation with the San Diego Supercomputer Center and the National Laboratory for Applied Network Research. They now operate a number of proxy caches located at various educational and commercial institutions throughout the U.S. . The log files we collected are from the proxy cache servers respectively at NCAR (Boulder, Colorado), PSC (Pittsburgh, Pennsylvania), SDSC(San Diego, California), NASA-Ames/FIX-West (Silicon Valley, California), NCSA (Urbana-Champaign, Illinois), Digital Internet Exchange (Palo Alto, California), MAE West Exchange Point (San Jose, California),  Research Triangle Park, (North Carolina) and New York. These logs were collected on a daily basis from July 11th, 2004 until August 11th, 2004. 
The access logs record the client’s request information for HTTP object. An access log consists mainly of the entries of time, duration, client address, result codes, bytes, request method, URL, Type and etc. Therefore, applet file requests can be identified through its extension (i.e. .class) in the URL entry and from the ‘result codes’ entry we can determine the status of the specific transaction. Table 3 shows the summary statistic for the raw data set. The successful requests mean the transactions whose HTTP result code is “200/OK”. From this table we can see that the applet file requests take 0.08% of the total requests. Among the applet file requests, 27.08% are successful requests. The main errors are with the code 304 (not modified) 31.3%, 404 (not find) 27.1% and 503 (Service Unavailable) 32.6%. Among the successful request, 59.6% are unique files and 16.4% are satisfied from caches.
Table 3. Summary of Access Log Characteristics

	Access log Duration
	Aug 11, 2004 ~ Sept 10, 2004

	Total requests count
	117790462

	Total applet request count
	95054

	Total successful applet requests count
	25737

	Total unique successful applet requests count
	14646

	Successful applet requests satisfied from cache
	4223

	
	

	Mean size of successful applet requests
	7176.85

	Median size of successful applet requests
	3725

	
	

	Mean size of successful unique applet file
	7085.56

	Median size of successful unique applet file
	3775


Figure 3 shows the distribution of all successful unique applet files in the data set. Figure 3(a) compares the distribution with the synthetic lognormal distribution (the dashed line) with parameters m= 7.19 and s=2.8. Figure 3(b) is the corresponding cumulative frequency plot. As we can see, the applet file size distribution is close to log normal distribution.
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Figure 3. Unique applet file size distribution: (a) frequency (b) cumulative frequency, compared with log normal distribution.
Figure 4 shows the transfer size distribution of all successful applet file in the data 
set. Figure 4(a) shows the distribution is close to the lognormal distribution (the dashed line) with parameters u = 6.97 and s = 2.28. Figure 4(b) is the corresponding cumulative frequency plot.
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Figure 4. Successful applet file transfer size distribution: (a) frequency (b) cumulative frequency, compared with log normal distribution.

The time period we used to collect and analyze the applet file traffic model may be short. In order to compensate that, we also analyze the daily applet file request summary reports of the IRCache daily summary report from 1997 to 2004. Figure 5 shows the daily applet file request ratio (5a), daily number of applet requests (5b) and the daily mean size (5c) respectively. The dashed line is the mean value. From these figures we can see that the applet file requests rate drops after the year of 2002 and tends to be stabilized at 0.8%. The mean size of applet file request is 7110 bytes. 
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(c) daily mean size of applet requests
Figure5. applet file request daily stat from 1997 to 2004. (a) daily applet request ratio (b) daily number of applet requests (c) the daily mean size of applet requests
Therefore we decided to use the applet traffic model with the parameters shown in Table 4  in our experiment. We took 0.003 percentages (which is heavier than the mean percentage) from the ‘other’ type of Polymix-4 workload as the applet file request percentage. We build up the applet file generation database on the server side with real applet files downloaded randomly from the Internet with the file sizes are according to the lognormal(7.1K, 6K) distribution. All the other paraments such as cachability, object life cycle, etc, we use the same as the ‘other’ type. 
Table 4 applet traffic model

	Percentage
	0.3%

	File size distribution
	Lognormal(7.1K, 6K )

	Cachability
	72%

	Object life cycle
	Use default as ‘other’ type


3. Experiment Result
In Web polygraph benchmark, clients and servers are synthetic. Given a specified peak request rate, on the client side, a number of client robots will be created to generate the specified request rate. Each robot is capable of producing 0.4 requests/sec load. On the server side, 500 + 0.1*Robots number of server agents will be created to serve the request. The client robots and the server agents bind to loopback interfaces and use the real network interfaces as routers. Every two robots/agents share one alias address. Besides IP addresses, the polygraph servers also have domain names. Hence a name server is required in the experiment.  Our experiment setup is as Figure 6a. We use one pair of client and server as shown in Figure 6a. The client runs on the machine with 756Hz AMD CPU, 256MB memory and Mandrake Linux 10.0 installed. The server runs on Dell Dimension 2450 with 2GHz Pentium4 CPU, 640 MB memory and Fedora Linux 1.0 installed. The Apache proxy server is on another Dell Dimension 2450 with 2GHz Pentium4 CPU, 640 MB memory and RedHat Linux 8.0 installed. As shown in figure 6a, all the three machines are connected through 100M network. In addition, the name server and ntp server are running on the same machine with proxy server. We use Apache version 2.0.52 as the proxy server. At the time of our experiments, the garbage collection functionality, which is used to limit apache cache within the specified size, hasn’t been implemented on Apache 2.0. However, the same functionality works properly on Apache 1.3. We thus rewrote the garbage collection part in version 1.3 and transplanted it to Apache2.0. Figure6b shows the Apache Proxy configuration that we used in the experiment, all the others use apache default configuration. Note that we set the MaxClients to be 250, which is number of maximum connections that apache proxy can support simultaneously. The security policy file we used in the experiment is called limitMem, which limits the amount of the memory that the application is allowed to use and has the worst performance overhead in our previous measurements [34].
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Figure 6. (a) experiment scheme (b) apache proxy configuration

Figure 7 (a)~(e) compares the performance result under different peak request rates. The cache size used is 16G bytes. As the peak request rate increases, the number of client robots and hence the concurrent client requests increases. Apache uses one thread for each connection and use thread pool to manage all the client threads. Connections that exceeded the maximum number of thread will be queued. We set the maximum client number to be 250, which is according to 30 xacts/sec peak request rate approximately. Thus, as shown in Figure 7, the proxy become overloaded after peak request rate 30 xacts/sec: The response time increases dramatically; The concurrent level increases while the throughput tends to be stabilized at 40 transactions/sec, which means clients requests keep queued at the proxy; The error rate rises up to be over 1% and over 90% of the errors are caused by connection time out. Figure 8 also gives the proxy server usage result. Except a little overhead on the server’s cpu usage (which is less than 1%), the impact of the BRSS on server memory usage and work load can not be detected. From the results, we can see that the performance result is nearly the same with or without the BRSS system and adding a binary rewriter to the apache proxy almost has no impact on its overall performance.
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Figure 9(a)~(d) compares the performance under different cache sizes. The peak request rate we used for this experiment is 30 xatc/sec. From the figures, we can see that the throughput, mean response time, and hit ratio increase as the cache size increases. Different from the performance result under different peak request rate, the concurrency level decreases with the cache size increases. This is because each request gets served more quickly with the cache size increase such that the number of current connections drops. Still, BRSS add almost have no impact to the proxy’s overall performance. 
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Figure 9. performance result under different cache sizes: (a) throughput (b) mean response time (c) hit ratio (d) concurrency level

However, the reason that the macro benchmarks show no impact of the BRSS system to overall performance may mainly be that the request ratio of applet files is too small. Therefore, to measure the overhead of the BRSS system added specifically on applet file request, we developed a micro benchmark. We logged each transaction for applet file quest, and then measured its mean response time. Figure 10a compares the time that java applet files flow through the proxy server with and without the BRSS system. The cache size used is 16G. With the BRSS system, we further divided the time into: buffer in, which is the time from the proxy gets the client’s request for applet file until the receiving buffer buffers the entire applet file; rewriting, which is the time that the binary rewriter takes to rewrite the file and buffer out, which is the time that the rewritten file in the output buffer is cached and sent to the client. With no BRSS system, the time is that applet file is cached and sent to the client. As we can see that the rewriting actually adds relatively little overhead to the applet file request while most of the overhead is caused by buffer in time. This is because the binary rewriter requires the entire file to be cached before it can rewrite it while, instead, without BRSS the file will be cached and then sent to the client in the unit of bucket, a trunk of the file. The buffer out is merely the time required to transfer files from the proxy to the clients and thus is very small that can barely be seen from the figure. Figure 10b shows the applet file mean response time measured with and without the BRSS system under different cache size. We can see that the overhead added by the BRSS system as shown in Figure 10a are amortized by the cache size. With the cache size increases, the ratio of cached rewritten applet files increases and thus more and more request are satisfied by cached file. 
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Figure 10 overhead added by the BRSS system to applet file request. 
We also did an offline experiment on the binary rewriter PoET. We compared the rewriting time by rewriting different size of applet files with two security policy limitMem and readDir respectively. readDir prevents the codes from accessing a specific directory. Figure 11 shows the performance result. The data label above each bar refers to hit times, which is the number of events that PoET need to add monitoring code to. For readDir, there is no hit and the time merely reflects the time that PoET takes to scan through the binary file. For limitMem, there are different amount of hit times for each code and the time reflects the time that PoET takes to scan and rewrite the code. As we can see that the rewriting time is decided by the file size and hit time and in [34] we have shown that the relation is generally a linear function of the rewriting time and hit number respectively.  
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Figure 11. Rico performance evaluation

4. Conclusions

In this section, we first studied the applet file traffic model. We found that the size distribution of applet file is approximately log normal distribution. We used this model in our experiment, and trained the polygraph server to generate real applet file traffic. Our experiment results show that adding the BRSS system almost has no impact on the proxy’s overall performance. For applet file request, the overhead added by the BRSS system will be amortized by serving the secured applet file directly from cache. 
7.  Related Works

Applet Trap[27] is a commercially available anti-virus software. It wraps applets in security monitoring code before the gateway server passes the applets on to the requesting client computer. The “suspect” applets with appended security monitoring wrappers, run their original applet code along with the monitoring code which looks ahead into the applets’ behavior to determine if the action applets will take matches any behavior defined in the administrators’ policy as malicious (such as reformatting the hard disk). If applets do not violate policy, their original code is permitted to run unimpeded on the client machine. Any applet that violates policy is immediately terminated. Different from many other content filtering or blocking software, the execution of the monitoring code doesn’t need the host system or software support. All policy instructions are managed from the server. No further material available about how AppletTrap rewrite the java applet code. However, we suspect that AppletTrap can only add checking code to block the predefined malicious instructions. 

 WiSA (Wisconsin Safety Analyzer) [26] is an on-going project that aims at developing analysis techniques especially suited for COTS components. The General Purpose Binary rewriter is one of its subtopics. Its goal is to provide a flexible and extendable general infrastructure that utilizes existing binary rewriting and analyzing tools such as EEL and codesurfer, and works across different platform, architectures and languages. However, to bring all of them into one data structure is a great challenge. Besides, under the project, there are also some other on-going research on binary analysis, such as intrusion detection, buffer overrun detection and malicious code detection. 

M. Arlitt and C. Williamson [28] did a comprehensive workload characterization study of a World-Wide Web proxy. We followed the similar method in our analysis of java applet file traffic. WPB (Wisconsin Proxy Benchmark) [29] is another caching proxy benchmark tool that are very similar to Web Polygraph. WPB consists of synthetic client and server processes. The workload is generated by reproducing the workload characteristics found in web proxy traces. The tool has been used for measuring several popular proxy servers. The main performance data collected by the benchmark are latency, proxy hit ratio and byte hit ratio, and number of client errors. However, it can not generate real content traffic as web polygraph does, which makes it impossible for content filtering type of performance evaluation.

8.  CONCLUSION

In this paper, we present our BRSS system, a binary rewriting security system for mobile code. The BRSS system is built as an application prototype by integrating binary rewriting with proxy caching techniques. It provided efficient support and management for binary rewriters and mobile code. We also developed a unique method in our performance evaluation section. We first performed a study specifically on Java applet file Internet traffic characteristics. This is the first time, to our knowledge, that such kind of study focusing on applet traffic is done though many previous analyses have been done on the Internet traffic. We employed the Web Polygraph as our performance benchmark, but customized it to fit our requirement for the real content filtering type test. We verified through comprehensive experiments that adding BRSS system into the proxy server almost has no impact on the overall proxy performance and the overhead added by the BRSS system especially on applet files is amortized by the cache size of proxy servers. 
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MaxClients         250


…


<IfModule mod_proxy.c>  


ProxyRequests On


…


ProxyReceiveBufferSize 16384


…


</IfModule>


<IfModule mod_disk_cache.c>


CacheRoot /mnt/proxy/cache2


CacheSize 16348000


CacheMaxExpire 24


CacheGcInterval 0.1


CacheDefaultExpire 1


CacheEnable disk /


CacheDirLevels 3


CacheDirLength 2


</IfModule>











